Testing against a non-controllable stream X-machine using state counting

Florentin Ipate*

Department of Computer Science and Mathematics, University of Pitesti, Str Targu din Vale 1, 0300 Pitesti, Romania

Received 23 June 2005; received in revised form 6 December 2005; accepted 13 December 2005

Communicated by D. Sannella

Abstract

Stream X-machines are a form of extended finite state machines that has received extensive study in recent years. A stream X-machine describes a system as a finite set of states, an internal store, called memory, and a finite number of transitions between the states, labelled by function names (the processing functions). One of the great benefits of using a stream X-machine to specify a system is its associated testing method. Under certain design for test conditions, this method produces a test suite that can determine the correctness of the implementation, provided that the processing functions of the stream X-machine specification have been correctly implemented (this can be checked by a separate testing process, using the same method or alternative functional methods). However, the application of the stream X-machine based testing method is often encumbered by the restrictive design for test conditions required. In practical applications, these conditions are achieved by designing extra functionality that will have to be disabled after testing has been completed. This is a time consuming process and can often be a source of error. This paper provides a strong generalisation of the existing method, which requires much laxer design for test conditions; these are naturally satisfied in practical applications and, furthermore, can be introduced into any stream X-machine specification without the need to add extra functionality. Consequently, the generalised method can be applied to virtually any system that can be specified by a stream X-machine.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Specification based testing; Test generation; Formal specifications; Stream X-machines; Finite state machines

1. Introduction

Formal methods have been regarded by many researchers as a solution to the problem of building high quality software. The use of formal specifications and models in software development eliminates the opportunity for ambiguity and allows the application of, possibly automated, formal analysis.

One approach to formally specifying a system is to use a form of extended finite state machine called a stream X-machine [28,32]. A stream X-machine is a type of X-machine [17,27,28] that describes a system as a finite set of states, an internal store, called memory, and a number of transitions between the states. A transition is triggered by an input value, produces an output value and may alter the memory. A stream X-machine may be modelled by a
finite automaton (the associated finite automaton) in which the arcs are labelled by function names (the processing functions). Stream X-machines combine the dynamic features of finite state machines with data structures, thus sharing the benefits of both these worlds. Various case studies [28,18,40] have demonstrated the value of the stream X-machine as a specification method, especially for interactive systems. A tool for writing stream X-machine specifications has also been constructed [39].

The X-machine model has also been studied from a theoretical point of view: various subclasses have been defined [32,4,5,23], the minimality issue has been investigated [30] and a refinement of stream X-machines [34,37] has been formalised. Furthermore, several models of communicating stream X-machines have been devised and their applicability to real applications has been demonstrated [9,3,15,22,38]. Communicating stream X-machines have also been used for simulating and verifying P-systems [1,6,10].

However, even where a formal specification or model is used, it is important to test the implementation [19]; this is the product we are ultimately interested in. While the presence of a formal model or specification of the required behaviour may allow test generation to be automated [21,24,16,41,13] it is still often difficult to deduce much from the implementation under test (IUT) behaving correctly on the test suite produced. Ideally, we should produce tests that are capable of providing a high degree of confidence in the correctness of the IUT while simplifying the problem of test generation to allow automation.

One of the great benefits of using a stream X-machine to specify a system is that, under certain well defined conditions, it is possible to produce a test suite that can determine the correctness of the IUT [33,28]. These conditions fall into two categories: design for test conditions, which place restrictions on the specification, and test hypotheses, which place restrictions on the IUT. The design for test conditions are rules that, if followed in the design process, will produce a system that is more easily testable. The test hypotheses require the system to be made of correct components, in other words the processing functions of the stream X-machine specification are required to be correctly implemented. In practice, this is checked by a separate process [28,35]: depending on the nature of the function, it can be tested using the same method or alternative functional methods, for example category partition testing [43] or a variant. Furthermore, recent results enable the testing of the processing functions to be integrated into the testing of the overall system [31]. A direct consequence of the test hypotheses is that, unlike other extended finite state machine based approaches [12,41], the test generation does not involve the construction of the equivalent finite state machine (whose states are the state/memory pairs of the stream X-machine), thus avoiding the state explosion problem associated with this construction. The stream X-machine based testing method was first developed for deterministic stream X-machines (those machines where, in any state and for any memory value, an input triggers at most one transition) [33,28] and was later extended to non-deterministic stream X-machines [36] and communicating stream X-machines [38]. In the case of non-deterministic specifications, both equivalence [36] and conformance [25,26] have been used as notion of correctness. The effectiveness of the method has been validated by many industrial case studies [11].

However, the application of the stream X-machine based testing method is often encumbered by the strictness of the design for test conditions required. There are two such conditions: output-distinguishability and controllability. The first requires that every processing function can be distinguished by examining the output produced when an input is applied to any given memory value. Controllability basically means that every path in the associated automaton can actually be driven by suitable input sequences. Whilst the first condition is quite natural and can be satisfied by a suitable enrichment of the observed output, controllability is seldom met by non-trivial specifications. In practical applications, controllability is enforced on a stream X-machine specification by designing extra input symbols that are not used in normal function and will have to be disabled after testing has been completed. This is a time consuming process and can often be a source of error.

This paper generalises the existing stream X-machine based testing method by considering specifications that do not meet the controllability requirement. This is replaced by a much laxer condition, called input-uniformity, which basically requires all memory values that are produced by the application of any single sequence of processing functions to any single memory to be processed in a uniform way by any processing function—that is, any function can either process all such memory values or none. The relaxed condition is naturally satisfied in practical applications of the method [28,11] and, furthermore, it can be achieved through a suitable refinement of the processing functions, without the need to design extra functionality. Consequently, the generalised method can be applied to virtually any stream X-machine specification.

As a consequence of removing the controllability requirement from the specification, the test generation strategy will have to be changed. When the specification is controllable, all paths can actually be driven by input sequences,
so the test generation procedure will basically be a generalisation of Chow’s W-method for deterministic finite state machines [33]. When the specification is not controllable, the W-method can no longer be applied. Instead, a state-counting approach will be used, which involves the construction of a product machine of the specification and the implementation. State-counting was originally used for conformance testing of a deterministic implementation against a non-deterministic finite state machine [44] and has been recently applied to testing of a deterministic implementation against a controllable non-deterministic stream X-machine specification [26].

The paper is structured as follows. Sections 2 and 4 introduce basic concepts of finite state machines and stream X-machines, respectively, while Section 3 presents Chow’s W-method for testing against a deterministic finite state machine specification. The design for test conditions, both in their original form (for controllable stream X-machines) and in the new, relaxed, form are given in Section 5. Section 6 discusses the issue of reaching and identifying the states of (possibly) non-controllable stream X-machines. The following five sections are dedicated to the generalised stream X-machine based testing method: Section 7 states the pre-requisites of the method; some preliminary results are given in Section 8; Section 9 defines the product machine used in state-counting, while Section 10 defines a test function as a means of converting sequences of processing functions derived from the product machine into input sequences; finally, the construction of the test suite and the results that validate this construction are given in Section 11. Section 12 discusses the complexity of the method, while the next section provides a technique for reducing the size of large test suites. Conclusions are drawn and further work is outlined in Section 14.

Before continuing, we introduce the notation used in the paper. For a finite alphabet \(A \), \(A^* \) denotes the set of all finite sequences with members in \(A \). \(\varepsilon \) denotes the empty sequence. For a sequence \(a \in A^* \), \(|a|\) denotes the number of elements of \(a \) (in particular \(|\varepsilon|\) = 0). For \(a, b \in A^* \), \(ab \) denotes the concatenation of sequences \(a \) and \(b \). \(a^n \) is defined by \(a^0 = \varepsilon \) and \(a^n = a^{n-1}a, n \geq 1 \). For \(U, V \subseteq A^* \), \(UV = \{ab|a \in U, b \in V\} \); \(U^n \) is defined by \(U^0 = \{\varepsilon\} \) and \(U^n = U^{n-1}U, n \geq 1 \). Furthermore, \(U^n = \bigcup_{0 \leq i \leq n} U^i \). For a sequence \(a \in A^* \), \(b \in A^* \) is said to be a prefix of \(a \) if there exists a sequence \(c \in A^* \) such that \(a = bc \). The set of all prefixes of \(a \) is denoted by \(\text{pref}(a) \). For \(U \subseteq A^* \), \(\text{pref}(U) = \bigcup_{a \in U} \text{pref}(a) \). For a relation or a (partial) function \(f : A \to B \), \(\text{dom}(f) \) denotes the domain of \(f \). For a finite set \(A \), \(\text{card}(A) \) denotes the number of elements in \(A \).

2. Deterministic finite state machines

This section introduces the deterministic finite state machine and related concepts and results that will be used later in the paper.

Definition 2.1. A deterministic finite state machine (DFSM) \(A \) is a tuple \((\Sigma, \Gamma, Q, h, q_0)\), as follows:

- \(\Sigma \) is the finite input alphabet.
- \(\Gamma \) is the finite output alphabet.
- \(Q \) is the finite set of states.
- \(h \) is the (partial) next-state and output function, \(h : Q \times \Sigma \to Q \times \Gamma \); \(h \) is usually described by a state-transition diagram.
- \(q_0 \in Q \) is the initial state.

Definition 2.2. \(A \) is said to be completely specified if \(h \) is a total function. Otherwise \(A \) is said to be partially specified.

Definition 2.3. The (partial) function \(h : Q \times \Sigma \to Q \times \Gamma \) breaks up into two (partial) functions

- \(h_1 : Q \times \Sigma \to Q \),
- \(h_2 : Q \times \Sigma \to \Gamma \)

having a common domain. \(h_1 \) is called the next-state function and \(h_2 \) the output function.

Definition 2.4. The next-state function \(h_1 \) can be extended to a (partial) function \(h_1^+ : Q \times \Sigma^* \to Q \) defined by

- \(h_1^+(q, \varepsilon) = q, q \in Q \),
- \(h_1^+(q, s\sigma) = h_1(h_1^+(q, s), \sigma), q \in Q, s \in \Sigma^*, \sigma \in \Sigma \).
The output function h_2 can be extended to a (partial) function $h_2^* : Q \times \Sigma^* \rightarrow I^*$ defined by

- $h_2^*(q, \varepsilon) = \varepsilon, q \in Q$,
- $h_2^*(q, s\sigma) = h_2^*(q, s)h_2(h_1^*(q, s), \sigma), q \in Q, s \in \Sigma^*, \sigma \in \Sigma$.

Definition 2.5. Given $q \in Q$, the (partial) function computed by A in q, denoted by f_A^q, is defined by

$$f_A^q(s) = h_2^*(q, s), \quad s \in \Sigma^*.$$

The function computed by A in q_0 is simply called the function computed by A and is denoted by f_A.

Definition 2.6. A state $q \in Q$ is called reachable if there exists $s \in \Sigma^*$ such that $h_1^*(q_0, s) = q$. A is called reachable if all states of A are reachable.

Definition 2.7. Given $Y \subseteq \Sigma^*$, two states $q_1, q_2 \in Q$ are called Y-equivalent if for all $s \in Y$, $h_2^*(q_1, s) = h_2^*(q_2, s)$. Otherwise q_1 and q_2 are called Y-distinguishable. If $Y = \Sigma^*$ then q_1 and q_2 are simply called equivalent or distinguishable, respectively. Two DFMs are called (Y-)equivalent or (Y-)distinguishable if their initial states are (Y-)equivalent or (Y-)distinguishable, respectively.

Definition 2.8. A is called reduced if every two distinct states of A are distinguishable.

Definition 2.9. A is called minimal if any DFSM that computes f_A has at least the same number of states as A.

Theorem 2.1. A is minimal if and only if A is reachable and reduced.

This is a well known result, for a proof see for example [17].

Definition 2.10. Let $A = (\Sigma, \Gamma, Q, h, q_0)$ and $A' = (\Sigma, \Gamma', Q', h', q'_0)$ be two DFMs over the same input alphabet. Then a function $g : Q \rightarrow Q'$ is called an isomorphism if

- g is bijective,
- $g(q_0) = q'_0$,
- $g(h_1(q, \sigma)) = h'_1(g(q), \sigma), q \in Q, \sigma \in \Sigma$,
- $h_2(q, \sigma) = h'_2(g(q), \sigma), q \in Q, \sigma \in \Sigma$.

Theorem 2.2. For two minimal DFMs A and A', $f_A = f_{A'}$ if and only if A and A' are isomorphic.

This is a well known result, for a proof see for example [17]. Techniques for constructing the minimal DFM that computes the same function as a given DFM also exist, for more detail see for example [17,14].

One special case of DFSM used in this paper is that in which the input and output alphabets coincide ($\Sigma = \Gamma$) and the output produced by h_2 is always identical to the input. Such a machine is completely described by a tuple $A = (\Sigma, Q, h_1, q_0)$ and in this paper it will be referred to as a finite automaton (FA)—the deterministic nature of the automaton will not be explicitly stated as any non-deterministic FA can be converted into an equivalent deterministic FA [14]. Since in this case the outputs are always identical to the inputs, the function computed by A (in the state q) will be completely determined by its domain. This will be called the language accepted by A (in q) and will be denoted by $L_A(q)$.

3. The W method for DFMs

We now turn our attention to DFSM based testing and, in particular, to the generation of test suites from a DFSM specification. Given a DFSM specification A and a set C of DFMs, called the fault domain, a test suite is a finite set of input sequences which, if they produce the specified results when applied to the implementation, will establish that the implementation under test is functionally equivalent to the specification, provided that it is known that this implementation can be modelled by some DFSM A' in C.
Naturally, the fault domain \(C \) is identified by the assumptions one can make about the implementation. In principle, no information is available about the implementation, but in this case a test suite may not exist for even very simple DFSA specifications. There are a number of more or less realistic assumptions that one can make about the form and size of the implementation model \(A' \) and these, in turn, give rise to different techniques for generating test suites [41]. One of the least restrictive assumptions refers to the number of states in \(A' \) and is the basis for the \(W \)-method [13]: the difference between the number of states of the implementation model and that of the specification has to be at most \(k \), a non-negative integer estimated by the tester.

The \(W \)-method involves the selection of two sets of input sequences, a state cover and a characterisation set, as defined next.

Definition 3.1. \(S \subseteq \Sigma^* \) is called a state cover of \(A = (\Sigma, \Gamma, Q, h, q_0) \) if \(\varepsilon \in S \) and for every state \(q \in Q \) there exists \(s \in S \) such that \(h^*_1(q_0, s) = q \).

Definition 3.2. \(W \subseteq \Sigma^* \) is called a characterisation set of \(A = (\Sigma, \Gamma, Q, h, q_0) \) if any two distinct states of \(A \) are \(W \)-distinguishable.

Note that a state cover and a characterisation set exist if \(A \) is minimal. These concepts are illustrated by Example 3.1.

Then the test suite generated by the \(W \)-method is

\[
U_k = S\Sigma[k+1]W = S \left(\bigcup_{0 \leq i \leq k+1} \Sigma^i \right) W,
\]

where

- \(S \) is a state cover of the specification \(A \).
- \(W \) is a characterisation set of the specification \(A \).

The idea is that the set \(S\Sigma[1] \) (usually called a transition cover of \(A \)) ensures that all the states and all the transitions in \(A \) are also present in \(A' \) and \(S\Sigma[k]W \) ensures that \(A' \) is in the same state as \(A \) after performing each transition. Note that the latter set contains \(W \) and also all sets \(\Sigma^iW \), \(1 \leq i \leq k \). This ensures that \(A' \) does not contain extra states. If there were up to \(k \) extra states, then each of them would be reached by some input sequence of up to length \(k \) from the existing states.

Theorem 3.1 (Chow [13]). Let \(A = (\Sigma, \Gamma, Q, h, q_0) \) and \(A' = (\Sigma, \Gamma, Q', h', q_0') \) be completely specified DFSA, \(A \) minimal, such that \(\text{card}(Q') - \text{card}(Q) \leq k, k \geq 0 \). Then \(A \) and \(A' \) are equivalent if and only if \(A \) and \(A' \) are \(U_k \)-equivalent.

The \(W \)-method was originally devised by Chow [13] for the case where the specification and the model of the implementation are both completely specified DFSA. On the other hand, finite automata, which are used in the description of stream X-machines, are almost always partially specified. Thus, given the purpose of this paper, of particular interest is the application of the \(W \)-method to (possibly) partially specified machines. As shown by the following counterexample, the \(W \)-method in the above form does not work for partially specified DFSA.

Example 3.1. Let us consider \(A = (\{a, b\}, \{a, b\}, \{0, 1\}, h, 0) \) and \(A' = (\{a, b\}, \{a, b\}, \{0, 1\}, h', 0) \), where \(h(0, a) = (1, a), h'(0, a) = (1, a), h'(0, b) = (1, b) \) and \(h \) and \(h' \) are undefined elsewhere. Clearly, both \(A \) and \(A' \) are partially specified. Then \(S = \{\varepsilon, a\} \) is a state cover of \(A \) and \(W = \{a\} \) is a characterisation set of \(A \). Since \(A \) and \(A' \) have the same number of states (2), the \(W \)-method gives \(U_0 = S\Sigma[1]W = \{a, aa, ba, aaa, aba\} \). However, the two DFSA are \(U_0 \)-equivalent but not equivalent. Indeed, the single input sequence which distinguishes between them is \(b \), which is not included in \(U_0 \).

This happens because, when \(A \) or \(A' \) are partially specified, \(A \) and \(A' \) may be \(\{s\} \)-equivalent for an input sequence \(s \), but \(\{t\} \)-distinguishable for some prefix \(t \) of \(s \). In Example 3.1, \(A \) and \(A' \) are \(\{ba\} \)-equivalent but \(\{b\} \)-distinguishable. Therefore, a solution is to take the set of all prefixes of \(U_k \), \(\text{pref}(U_k) \), instead of just \(U_k \). In [7] it is shown that only a
subset U_k of $\text{pref}(U_k)$ is actually needed:

$$U_k' = U_k \cup S\Sigma[k]\Sigma = S\Sigma[k+1]W \cup S\Sigma[k]\Sigma.$$

In Example 3.1, A and A' are U_0'-distinguishable since $b \in U_k' = \{a, b, ab, ba, aab, aba\}$. On the other hand, it will transpire that, when considering stream X-machines that are defined for every input sequence, the prefixes need not be included in the set of sequences derived from the partially specified associated automaton.

A variant of the W-method is the partial W-method (W_p-method) [20]. This reduces the size of the test suite at the expense of a slightly more complex generation algorithm. Instead of using the whole set W to check each state q, only a subset of this set can be used in certain cases. This subset W_q depends on the reached state q and is called an identification set of q. The W_p-method was originally devised for completely specified DFSSMs [20], but can be extended to partially specified machines in a similar manner to the W-method [8].

4. Stream X-machines

In essence, a stream X-machine is like a finite state machine but with one important difference: instead of abstract symbols, the transition labels are processing functions, which represent the elementary operations that the machine is capable of performing. Analogously to a finite state machine, a processing function will read inputs and produce outputs. Additionally, though, the machine has some internal store, called memory, so that the output produced by a processing function in response to an input will depend on the current memory value. Naturally, the processing function may also change the value of the memory. The model is formally described next.

Definition 4.1. A stream X-Machine (SXM) is a tuple $Z = (\Sigma, \Gamma, Q, M, \Phi, F, q_0, m_0)$, where

- Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- Q is the finite set of states.
- M is a (possibly infinite) set called memory.
- Φ is a finite set of distinct processing functions; a processing function is a non-empty (partial) function of type $M \times \Sigma \rightarrow \Gamma \times M$.
- F is the (partial) next-state function, $F : Q \times \Phi \rightarrow Q$.
- $q_0 \in Q$ is the initial state.
- $m_0 \in M$ is the initial memory value.

It is sometimes helpful to think of an X-machine as a finite automaton with the arcs labelled by functions from the set Φ. The automaton $A_Z = (\Phi, Q, F, q_0)$ over the alphabet Φ is called the associated finite automaton (associated FA) of Z. A_Z is usually described by a state-transition diagram. Analogously to finite state machines, the function F may be extended to take sequences from Φ^* to form the function F^*.

The set Φ is often called the type of Z. Typically, each element of Φ specifies components that may be used in the software system specified by Z. The memory normally represents the variables used by the computer program; typically M is formed from tuples, where each element of the tuple corresponds to either a global variable or a parameter that may be passed between the elements of Φ.

Example 4.1. A stream X-machine $Z = (\Sigma, \Gamma, Q, M, \Phi, F, q_0, m_0)$ is used to describe the behaviour of a bounded stack having maximum $k \geq 2$ elements of type E. The elements received by the machine are pushed on to the stack until this is full. The top most element of the stack is removed when the machine receives a special symbol, denoted by rem. The output symbols are considered to be the elements popped off the stack, a null symbol (used when a new element has been pushed on to the stack) and an error symbol, indicating that an operation (push or pop) has failed. Any failed operation will lead to an Error state; for simplicity, a special output symbol, errid, is also used to identify this state. The formal definition of Z is given in what follows:

- $\Sigma = E \cup \{\text{rem}\}$, where E is a finite set and $\text{rem} \notin E$.
- $\Gamma = E \cup \{\text{null}, \text{error}, \text{errid}\}$, where $\text{null}, \text{error}, \text{errid}$ are pairwise distinct symbols such that $\{\text{null}, \text{error}, \text{errid}\} \cap E = \emptyset$.

- $Q = \{\text{Popped}, \text{Loaded}, \text{Pushed}, \text{Error}\}$. The initial state is Popped, i.e. $q_0 = \text{Popped}$.
- $M = E[k]$. The memory holds the content of the stack. Initially, the stack is empty, i.e. $m_0 = \varepsilon$.
- $\Phi = \{\text{pushSucc}, \text{popSucc}, \text{pushErr}, \text{popErr}, \text{errId}\}$, where pushSucc and popSucc denote the successful application of the push and pop operations, whilst pushErr and popErr denote their erroneous behaviour. errId is used to identify the Error state of the machine. The processing functions are defined in what follows. For simplicity, the definitions are restricted to the domains of the functions.

 \[
 \begin{align*}
 \text{pushSucc}(m, e) &= (m \cdot e, \text{null}), m \in M \setminus E^k, e \in E, \\
 \text{popSucc}(m, e, \text{rem}) &= (m, e), m \in M \setminus E^k, e \in E, \\
 \text{pushErr}(m, e) &= (m, \text{error}), m \in E^k, e \in E, \\
 \text{popErr}(m, \text{rem}) &= (\varepsilon, \text{error}), \\
 \text{errId}(m, \text{error}) &= (m, \text{errid}), m \in M, e \in \Sigma.
 \end{align*}
 \]

- F is as represented in Fig. 1. From the initial state Popped, two consecutive successful applications of push will always be possible. On the other hand, pop can either be successfully applied from Popped or produce an error, depending on the current value of the memory. Similarly, pop can be successfully applied twice from Pushed, whereas the application of push in the same state may either be successful or produce an error, depending on the value of the memory. Both push and pop are always successfully applied from the Loaded state.

The stream X-machine model is inspired by the Object machine described in [45] and will be used in illustrations later in the paper. It will transpire that the model is not suitable for test generation and, consequently, the X-machine will be redesigned in Section 12, but for the time being it serves our purpose.

A sequence p of processing functions induces a function $\|p\|$ that shows the correspondence between a (memory, input sequence) pair and the (output sequence, memory) pair produced by the application, in turn, of the processing functions in the sequence p.

Definition 4.2. Given a sequence $p \in \Phi^*$. p induces the (partial) function

\[
\|p\| : M \times \Sigma^* \to \Gamma^* \times M
\]

defined as follows:

- $\|\varepsilon\|(m, \varepsilon) = (\varepsilon, m), m \in M$,
- Given $p \in \Phi^*$ and $\phi \in \Phi$, $\|p \phi\|(m, s \sigma) = (g \gamma, m')$, for $m, m' \in M, s \in \Sigma^*, g \in \Gamma^*, \sigma \in \Sigma, \gamma \in \Gamma$ such that there exists $m'' \in M$ with $\|p\|(m, s) = (g, m'')$ and $\phi(m'', \sigma) = (\gamma, m')$.

A machine computation takes the form of a traversal of all sequences of arcs in the state space from the initial state and the application, in turn, of the arc labels (which represent processing functions) to the initial memory value. The
correspondence between the input sequence applied to the machine and the output produced gives rise to the relation computed by the machine.

Definition 4.3. Given an SXM Z, the relation computed by Z, \(f_Z : \Sigma^* \rightarrow \Gamma^* \), is defined by: \((s, g) \in f_Z\) if there exist \(p \in \Phi^* \) and \(m \in M \) such that \((q_0, p) \in \text{dom} F^* \) and \(\| p \| (m_0, s) = (g, m) \). We say that Z computes \(f_Z \).

A completely defined SXM is one in which every sequence of inputs is processed by at least one sequence of functions accepted by the associated automaton.

Definition 4.4. Z is said to be completely defined if \(\text{dom} f_Z = \Sigma^* \).

Sometimes, a stronger condition is required from a stream X-machine: a completely specified SXM is one in which there is at least one possible transition for every triplet \(q \in Q, m \in M, \sigma \in \Sigma \).

Definition 4.5. An SXM \(Z = (\Sigma, \Gamma, Q, M, \Phi, F, q_0, m_0) \) is called completely specified if for every \(q \in Q \), every \(m \in M \) and every \(\sigma \in \Sigma \), there exists \(\phi \in \Phi \) such that \((m, \sigma) \in \text{dom} \phi \) and \((q, \phi) \in \text{dom} F \).

As not all memory values may actually be attained in every state of the machine (as explained in Section 5), it is sufficient for an SXM specification to be completely defined. On the other hand, it is often more convenient to produce SXM specifications that are completely specified, since, in this case, it is not necessary to determine whether a memory value can be attained in a given state. The SXM given in Example 4.1 is not completely specified since there is no erroneous push transition (when the stack is full) defined from Popped. Similarly, the erroneous pop transition (when the stack is empty) is not defined from Pushed and neither erroneous transitions exist from Loaded. On the other hand, it can be observed that the stack may never be full in Popped nor empty in Pushed and neither full nor empty in Loaded, so the machine is completely defined. A SXM may be transformed into one that is completely defined or completely specified by adding erroneous transitions to an Error state, in a similar way to Example 4.1.

A deterministic SXM is one in which there is at most one possible transition for any triplet \(q \in Q, m \in M, \sigma \in \Sigma \).

Definition 4.6. A deterministic SXM (DSXM) is an SXM for which every two distinct processing functions that label arcs emerging from the same state have disjoint domains, i.e. for every \(\phi_1, \phi_2 \in \Phi \), if there exists \(q \in Q \) such that \((q, \phi_1), (q, \phi_2) \in \text{dom} F \) then either \(\phi_1 = \phi_2 \) or \(\text{dom} \phi_1 \cap \text{dom} \phi_2 = \emptyset \).

A deterministic SXM \(Z \) will compute a (partial) function \(f_Z \) (the function computed by \(Z \)), rather than a relation. Note that the deterministic character of a SXM can be preserved by its transformation into a completely defined (or completely specified) SXM using erroneous transitions to an Error state. The SXM given in Example 4.1 is deterministic.

In the remainder of this paper we will only refer to deterministic SXMs.

5. Design for test conditions

When a specification is used as basis for test generation, it is natural to identify some design requirements that the specification will have to meet in order to facilitate the testing process. These are usually referred to as design for test conditions. Obviously, the weaker these conditions are, the more general the validity of the testing strategy will be. In the case of a DSXM specification, the design for test conditions place restrictions on the type \(\Phi \) of the specification. In this paper two design for test conditions will be required: output-distinguishability and input-uniformity.

Informally, \(\Phi \) is output-distinguishable when the output produced in response to any given input determines which processing function has been applied. That is, given two distinct processing functions \(\phi_1 \) and \(\phi_2 \), a memory value \(m \) and an input \(\sigma \), the two functions cannot produce the same output if given \(\sigma \) when the memory value is \(m \). This property allows the tester to determine the sequence of processing functions applied by examining the output sequence produced when given an input sequence.

Definition 5.1. \(\Phi \) is called output-distinguishable if for all \(\phi_1, \phi_2 \in \Phi \), whenever there exist \(m, m_1, m_2 \in M, \sigma \in \Sigma, \gamma \in \Gamma \) such that \(\phi_1 (m, \sigma) = (\gamma, m_1) \) and \(\phi_2 (m, \sigma) = (\gamma, m_2) \), then \(\phi_1 = \phi_2 \).
The output-distinguishability condition can be enforced on a DSXM specification by making some memory variables observable (typically through debug messages in practical applications) and splitting some processing functions into two or more parts, in order to remove the overlapping of identical behaviour. In Example 4.1, \(\Phi \) is output-distinguishable.

Informally, \(\Phi \) is input-uniform if all memory values that are produced by the application of any single sequence of processing functions to any single memory are processed in a uniform way by any processing function—that is, any function can either process all such memory values or none. The memory values that are produced as the result of applying the same sequence of processing functions to the same starting memory value will be called image-similar. The memory values that are processed uniformly by any processing function will be called domain-similar.

Definition 5.2. Two memory values \(m_1, m_2 \in M \) are said to be domain-similar if for all \(\phi \in \Phi \), there exists \(\sigma \in \Sigma \) such that \((m_1, \sigma) \in \text{dom} \phi \) if and only if there exists \(\sigma \in \Sigma \) such that \((m_2, \sigma) \in \text{dom} \phi \).

Domain-similarity is an equivalence relation on \(M \). For \(Z \) as defined in Example 4.1, domain-similarity induces three equivalence classes on \(M = E[k]: \{z\}, E[k – 1] \setminus \{z\} \) and \(E^k \).

Definition 5.3. isim, \(j \geq 0 \), are relations on \(M \) defined as follows:
- \((m, m) \in \text{isim}_0, m \in M \).
- If \(j > 0 \), \((m_1, m_2) \in \text{isim}_j \), for \(m_1, m_2 \in M \) such that
 - \((m_1, m_2) \in \text{isim}_{j – 1} \) or
 - there exist \(m'_1, m'_2 \in M \) such that \((m'_1, m'_2) \in \text{isim}_{j – 1} \) and there exist \(\phi, \sigma_1, \sigma_2 \in \Sigma, \gamma_1, \gamma_2 \in \Gamma \), such that \((\phi(m'_1, \sigma_1) = (\gamma_1, m_1)) \) and \((\phi(m'_2, \sigma_2) = (\gamma_2, m_2)) \).

Two memory values \(m_1, m_2 \in M \) are said to be image-similar if \((m_1, m_2) \in \text{isim}_j \) for some \(j \geq 0 \).

A direct consequence of the above definition is that if there exists \(j_0 \geq 0 \) such that \(\text{isim}_{j_0} = \text{isim}_{j_0 + 1} \) then \(\text{isim}_{j_0} = \text{isim}_{j_0 + i}, i \geq 1 \), so the image-similarity relation coincides with \(\text{isim}_{j_0} \).

For \(Z \) as defined in Example 4.1, \(0 \leq j \leq k \) and \(m_1, m_2 \in E[k], (m_1m_2) \in \text{isim}_j \) if and only if \(|m_1| = |m_2| \) and, if \(|m_1| > j \), the bottom-most \(|m_1| – j \) elements of \(m_1 \) and \(m_2 \) coincide. Thus, \((m_1m_2) \in \text{isim}_k \) if and only if \(|m_1| = |m_2| \). Furthermore, it can be observed that \(\text{isim}_k = \text{isim}_{k + 1} \). Therefore \(m_1 \) and \(m_2 \) are image-similar if and only if \(|m_1| = |m_2| \).

An equivalent form of Definition 5.3 is given by the following lemma.

Lemma 5.1. Two memory values \(m_1, m_2 \in M \) are image-similar if and only if there exist \(p \in \Phi^*, m \in M, s_1, s_2 \in \Sigma^*, g_1, g_2 \in \Gamma^* \), such that \(\|p\|(m, s_1) = (g_1, m_1) \) and \(\|p\|(m, s_2) = (g_2, m_2) \).

Proof. By induction on \(j \geq 0 \) it follows that \((m_1, m_2) \in \text{isim}_j \) if and only if there exist \(p \in \Phi[j], m \in M, s_1, s_2 \in \Sigma^*, g_1, g_2 \in \Gamma^* \), such that \(\|p\|(m, s_1) = (g_1, m_1) \) and \(\|p\|(m, s_2) = (g_2, m_2) \). \(\Box \)

Note that image-similarity, as defined above, is not a transitive relation. On the other hand, its transitive closure could have been used instead, without affecting the definition of input-similarity (Definition 5.4).

Definition 5.4. \(\Phi \) is called input-uniform if for all \(m_1, m_2 \in M \), if \(m_1 \) and \(m_2 \) are image-similar then \(m_1 \) and \(m_2 \) are domain-similar.

When \(\Phi \) is input-uniform, one can determine an input sequence that drives a sequence of processing functions by simply selecting appropriate input symbols for each processing function in the sequence, one at a time, without needing to know the processing functions to be applied next. This is conveyed by the following lemma.

Lemma 5.2. Suppose \(\Phi \) is input-uniform. Let \(\phi_1, \ldots, \phi_j \in \Phi, j \geq 2 \), for which there exists \(s = \sigma_1 \ldots \sigma_j \in \Sigma^* \) such that \((m_0, s) \in \text{dom} \|\phi_1 \ldots \phi_j\| \). Then, for every \(i, 1 \leq i \leq j – 1 \), and every \(\sigma'_1, \ldots, \sigma'_i \in \Sigma \) such that \((m_0, \sigma'_1 \ldots \sigma'_i) \in \text{dom} \|\phi_1 \ldots \phi_i\| \) there exist \(\sigma'_{i+1}, \ldots, \sigma'_j \in \Sigma \) such that \((m_0, \sigma'_1 \ldots \sigma'_j) \in \text{dom} \|\phi_1 \ldots \phi_j\| \).
The stronger input-completeness condition appears to be required in all previous publications addressing stream X-

Proof. Let $\|\phi_1 \ldots \phi_k\|(m_0, \sigma_1 \ldots \sigma_k) = (\gamma_1 \ldots \gamma_k, m_k)$ and $\|\phi_1 \ldots \phi_k\|(m_0, \sigma'_1 \ldots \sigma'_k) = (\gamma'_1 \ldots \gamma'_k, m'_k)$, $m_k, m'_k \in M$, $\gamma_k, \gamma'_k \in \Gamma$, $1 \leq k \leq i$. By Lemma 5.1, m_k and m'_k are image-similar. Thus there exists $\sigma'_{i+1} \in \Sigma$ such that $(m_0, \sigma'_1, \ldots, \sigma'_{i+1}) \in \text{dom} \|\phi_1 \ldots \phi_{i+1}\|$. Since the existence of σ'_{i+1} can be deduced from the existence of $\sigma'_1, \ldots, \sigma'_i$, the required result follows by induction on $j \geq i + 1$. \[\square\]

In the worst case, input-uniformity can be achieved by designing processing functions that are triggered by single inputs—in this case every memory value is only similar to itself.

A stronger variant of this condition, input-completeness, requires every processing function to be able to process all memory values. When Φ is input-complete, all memory values are pairwise domain-similar.

Definition 5.5. Φ is called input-complete if for all $\phi \in \Phi$, all $m \in M$, there exists $\sigma \in \Sigma$ such that $(m, \sigma) \in \text{dom} \phi$.

In Example 4.1, Φ is input-uniform but not input-complete (popSucc does not apply to the empty stack, for example). The stronger input-completeness condition appears to be required in all previous publications addressing stream X-machine based testing [2,5,11,25,28,29,31,33–38].

Analogously to DFSMs, testing from a DSXM specification Z will involve the selection of input sequences that reach and distinguish the states of Z. These two issues are discussed in the following section.

6. Reaching and distinguishing states in a DSXM

As the labels used in the state-transition diagram of a DSXM are functions rather than mere symbols, there may be states that are reachable in the diagram but cannot actually be reached by any input sequence applied to the machine. Similarly, there may be pairs of distinguishable states in the associated automaton for which the sequences of processing functions that distinguish between them can never be applied.

Example 6.1. Consider $Z_1 = \{(a, b), \{a, b\}, \{0, 1, 2, 3\}, \{0, 1\}, \{f, g\}, F_1, \{0\}, \{0\}\}$, with $f(0, a) = (a, 1)$ and $g(0, b) = (b, 1)$ (f and g are undefined elsewhere) and F_1 as represented in Fig. 2. As the domains of both $\|ff\|$ and $\|gg\|$ are empty, state 3 cannot be reached by any input sequence applied to Z. Furthermore, since neither f can be applied in state 1, nor g can be applied in state 2, states 1 and 2 cannot be distinguished by any input even though they are distinguishable states in the associated FA.

6.1. Realisable sequences

In order to determine which states can actually be reached or distinguished, we have to establish which sequences of processing functions in the associated automaton can be driven by input sequences. Such sequences of processing functions are called realisable.

Definition 6.1. Given a memory value $m \in M$, the set $R_{\Phi}(m)$ is defined to consist of all sequences of processing functions $p = \phi_1 \ldots \phi_n \in \Phi^n$, $n \geq 0$, for which there exists $s = \sigma_1 \ldots \sigma_n \in \Sigma^n$ such that $(m, s) \in \text{dom} \|p\|$.

![Fig. 2. The state-transition diagram of Z_1.](image-url)
Definition 6.2. Given a state \(q \in Q \) and a memory value \(m \in M \), a sequence of processing functions \(p \in \Phi^* \) is said to be realisable in \(q \) and \(m \) if \(p \in L_{A_2}(q) \) and \(p \in R_{\Phi}(m) \). If \(q = q_0 \) and \(m = m_0 \), \(p \) is simply said to be realisable. The set of all processing functions realisable (in \(q \) and \(m \)) is denoted by \(LR_Z \) (or \(LR_Z(q, m) \)), i.e. \(LR_Z(q, m) = L_{A_2}(q) \cap R_{\Phi}(m) \) and \(LR_Z = L_{A_2} \cap R_{\Phi}(m_0) \).

Note that, when \(\Phi \) is input-complete, all sequences of processing functions accepted by the associated automaton are realisable. Such DSXMs are called controllable.

Definition 6.3. \(Z \) is said to be controllable if \(LR_Z = L_{A_2} \).

6.2. \(r \)-reachable states

Sequences in \(LR_Z \) make it possible to reach some states of a DSXM using appropriate input sequences. Such states will be referred to as \(r \)-reachable.

Definition 6.4. A state \(q \in Q \) is said to be \(r \)-reachable if there exists \(p \in LR_Z \) such that \(F^*(q_0, p) = q \).

Any state that is not \(r \)-reachable can be removed without affecting the function computed by the machine. Since \(e \in LR_Z \), the initial state is always \(r \)-reachable.

An \(r \)-state cover is a minimal set of realisable sequences \(S_r, e \in S_r \), that reaches every \(r \)-reachable state in \(Z \).

Definition 6.5. A set \(S_r \subseteq LR_Z \) is called an \(r \)-state cover of \(Z \) if:

- \(e \in S \).
- For every \(r \)-reachable state \(q \) of \(Z \) there exists \(p \in S_r \) such that \(F^*(q_0, p) = q \).
- For every two distinct sequences \(p_1, p_2 \in S_r \), \(F^*(q_0, p_1) \neq F^*(q_0, p_2) \).

For \(Z \) as in Example 4.1, \(e, pop\text{Err}, push\text{Succ}, push\text{Succ} push\text{Succ} push\text{Succ} \in LR_Z \). Thus all states of \(Z \) are \(r \)-reachable and \(S_r = \{e, pop\text{Err}, push\text{Succ}, push\text{Succ} push\text{Succ} \} \) is an \(r \)-state cover of \(Z \).

6.3. Attainable memory values

The memory values computed along all sequences in \(LR_Z \) that reach a state \(q \) will be said to be attainable in \(q \).

Definition 6.6. Given a state \(q \in Q \), a memory value \(m \in M \) is said to be attainable in \(q \) if there exist \(p \in LR, s \in \Sigma^* \), \(g \in I^* \) such that \(F^*(q_0, p) = q \) and \(p(m_0, s) = (g, m) \). The set of all memory values attainable in \(q \) is denoted by \(M\text{Att}(q) \).

For \(Z \) as in Example 4.1, \(M\text{Att}(Popped) = E[k - 2], M\text{Att}(Loaded) = E[k - 1] \setminus \{e\}, M\text{Att}(Pushed) = E[k] \setminus E[1], M\text{Att}(\text{Error}) = \{e\} \cup E^k \).

6.4. \(r \)-distinguishable states

We will say that two states \(q_1 \) and \(q_2 \) of a DSXM are \(r \)-distinguishable if it is possible to distinguish between them by applying a finite set of realisable sequences of processing functions in any attainable memory value of \(q_1 \) and \(q_2 \), respectively.

Definition 6.7. Given \(q_1, q_2 \in Q \), a set \(Y \subseteq \Phi^* \) is said to \(r \)-distinguish between \(q_1 \) and \(q_2 \) if for every \(m_1 \in M\text{Att}(q_1) \) and every \(m_2 \in M\text{Att}(q_2) \), \(LR(q_1, m_1) \cap Y \neq LR(q_2, m_2) \cap Y \). Two states \(q_1 \) and \(q_2 \) are said to be \(r \)-distinguishable if there exists a finite set of sequences \(Y \) that \(r \)-distinguishes between them.

As shown by Example 6.1, not every pair of states of a DSXM can necessarily be \(r \)-distinguished by a set of sequences even if the associated FA is minimal. Furthermore, even if such a set exists, it may not be finite, as shown by the following counterexample.
Example 6.2. Consider $Z_2 = \{-1, 1\}, \{m, p, a, b\}, \{a, b\}, N_0, \Phi_2, F_2, \{a\}, \{0\}$, where N_0 is the set of non-negative integers; $\Phi_2 = \{\text{minus}, \text{plus}, \text{switch}_a, \text{switch}_b\}$; $\text{minus}(n, -1) = (m, n - 1), n \geq 1$; $\text{plus}(n, 1) = (p, n + 1), n \geq 0$; $\text{switch}_a(0, -1) = (a, 0)$; $\text{switch}_b(0, -1) = (b, 0)$ (the processing functions are undefined elsewhere) and F_2 is as represented in Fig. 3. Then $M\text{Att}(a) = M\text{Att}(b) = N_0$ and for every $n_1, n_2 \in N_0$, $\text{minus}^{n_1} \text{switch}_b \in \text{LR}(a, n_1) \setminus \text{LR}(b, n_2)$. However, for every $n \in N_0$ and every $n_1, n_2 \in N_0$ such that $n_1, n_2 > n$, $\text{LR}(a, n_1) \cap \Phi_2[n] = \text{LR}(b, n_2) \cap \Phi_2[n] = \{\text{minus}, \text{plus}\}[n]$. Thus a and b are not r-distinguishable.

For Z as in Example 4.1, $\{\text{errId}\}$ r-distinguishes between Error and any of Popped, Loaded and Pushed, so Error is r-distinguishable from any other state of Z. The problem of distinguishing between the remaining states is slightly more complex. First, it can be observed that for every $q \in \{\text{Popped}, \text{Loaded}, \text{Pushed}\}$ and every $m \in M\text{Att}(q)$, $LZ(q, m) = K_1 \cup K_2 \cup K_3$, where

- K_1 consists of all sequences $p \in \{\text{pushSucc}, \text{popSucc}\}^*$ for which every prefix p' of p satisfies $0 \leq N_{\text{pushSucc}}(p') - N_{\text{popSucc}}(p') + |m| \leq k$, where $N_{\Phi}(p')$ denotes the number of occurrences of Φ in the sequence p';
- K_2 consists of all sequences $p = p_1, p_2$, with $p_1 \in K_1$ such that $N_{\text{pushSucc}}(p_1) - N_{\text{popSucc}}(p_1) + |m| = 0$ and $p_2 \in \{\text{popErr}\}[\text{errId}]^*$;
- K_3 consists of all sequences $p = p_1, p_2$, with $p_1 \in K_1$ such that $N_{\text{pushSucc}}(p_1) - N_{\text{popSucc}}(p_1) + |m| = k$ and $p_2 \in \{\text{pushErr}\}[\text{errId}]^*$.

Hence, it follows that for every $q_1, q_2 \in \{\text{Popped}, \text{Loaded}, \text{Pushed}\}$, every $m_1 \in M\text{Att}(q_1)$ and every $m_2 \in M\text{Att}(q_2)$, $LZ(q_1, m_1) = LZ(q_2, m_2)$ if and only if $|m_1| = |m_2|$. As M is finite, q_1 and q_2 are r-distinguishable if and only if for every $m_1 \in M\text{Att}(q_1)$ and every $m_2 \in M\text{Att}(q_2)$, $|m_1| \neq |m_2|$. Since $M\text{Att}(\text{Popped}) = E[k - 2]$, $M\text{Att}(\text{Loaded}) = E[k - 1] \setminus \{\varepsilon\}$ and $M\text{Att}(\text{Pushed}) = E[k] \setminus E[1]$, the following three cases can be distinguished:

- $k = 2$: In this case $M\text{Att}(\text{Popped}) = \{\varepsilon\}$, $M\text{Att}(\text{Loaded}) = E$ and $M\text{Att}(\text{Pushed}) = E^2$. Thus, Popped, Loaded and Pushed are pairwise r-distinguishable. Since $\text{popErr} \in LZ(\text{Popped}, \varepsilon)$ and popErr is allowed neither from Loaded nor from Pushed, $\{\text{popErr}\}$ r-distinguishes Popped from any of Loaded and Pushed. Similarly, $\{\text{pushErr}\}$ r-distinguishable Pushed from any of Popped and Loaded.

- $k = 3$: In this case $M\text{Att}(\text{Popped}) = E \cup \{\varepsilon\}$, $M\text{Att}(\text{Loaded}) = E^2 \cup E$ and $M\text{Att}(\text{Pushed}) = E^3 \cup E^2$. Thus, Popped and Pushed are r-distinguishable, but Loaded can be r-distinguished neither from Popped, nor from Pushed. Since $\text{popErr} \in LZ(\text{Popped}, \varepsilon)$ and for every $m \in E$, $\text{pushSucc popErr} \in LR(\text{Popped}, m)$ and neither of these two sequences can be applied from Popped, $\{\text{popErr, pushSucc popErr}\}$ r-distinguishes between Popped and Pushed.

- $k \geq 4$: In this case $M\text{Att}(\text{Popped}) = E^{k-2} \cup \cdots \cup E^2 \cup E \cup \{\varepsilon\}$, $M\text{Att}(\text{Loaded}) = E^{k-1} \cup \cdots \cup E^3 \cup E^2 \cup E$ and $M\text{Att}(\text{Pushed}) = E^k \cup \cdots \cup E^4 \cup E^3 \cup E^2$. Thus, $\{\text{Popped, Loaded, Pushed}\}$ contains no pairwise r-distinguishable elements.

An r-characterisation set is a set of sequences of processing functions that r-distinguishes between every pair of r-distinguishable states.

Definition 6.8. A set $W_r \subseteq \Phi^*$ is called an r-characterisation set of Z if W_r r-distinguishes between every two r-distinguishable states of Z.
For Z as defined in Example 4.1, three cases will have to be considered, as discussed earlier:

- \(k = 2 \): \(W_r = \{ \text{errId}, \text{pushErr}, \text{popErr} \} \) is an \(r \)-characterisation set of \(Z \).
- \(k = 3 \): \(W_r = \{ \text{errId}, \text{popErr}, \text{popSucc popErr} \} \) is an \(r \)-characterisation set of \(Z \).
- \(k \geq 4 \): \(W_r = \{ \text{errId} \} \) is an \(r \)-characterisation set of \(Z \).

7. Testing against a DSXM specification: prerequisites

The remainder of the paper will address the problem of deriving test suites from a DSXM specification. A test suite is a finite set of input sequences that can establish the correctness of the implementation under test with respect to the specification. Naturally, functional equivalence is used as the notion of correctness. This section states the requirements that the specification will have to meet and the assumptions made about the implementation under test.

7.1. The specification

The specification considered will be a completely defined DSXM \(Z = (\Sigma, \Gamma, Q, M, \Phi, F, q_0, m_0) \), with \(\Phi \) output-distinguishable and input-uniform (the design for test conditions). Unlike in previous publications addressing stream X-machine based testing, \(Z \) may be non-controllable. As the specification is required to be completely defined, when inputs are not expected in a state for certain attainable memory values, appropriate erroneous transitions to an error state will be introduced.

7.2. The fault domain

When testing against a formal specification, the IUT is normally considered to be functionally equivalent to some element from a set of models, called the fault domain, which is determined by the assumptions one can make about the implementation. As the specification is a DSXM, naturally, the fault domain will contain DSXMs, so it will be assumed that the IUT behaves like some unknown completely defined DSXM \(Z' \) with the same input alphabet and output alphabet as the specification \(Z \). Since the memory models the data and the internal variables used by the implementation, \(Z' \) will have the same memory as \(Z \). Naturally, \(Z \) and \(Z' \) will be initialised with the same values for the memory. Note, however, that the testing procedure will not depend on the choice of the initial memory. A different initial memory, or initial state, may produce different test data, but the test generation algorithm will remain unchanged.

Additionally, when testing from a DSXM, it is normally assumed that \(Z \) and \(Z' \) have the same sets of processing functions (type) \([2, 5, 11, 25, 26, 28, 29, 33–38]\). This corresponds to the situation where the implementation is built either from reusable trusted components or from components that have been thoroughly tested.

As for finite automata, the number of the states of the implementation model will be bounded by an integer \(n' \) estimated by the tester, which is greater than or equal to the number of states \(n \) of the specification. However, an upper bound on the number of states of \(Z' \) is not a sufficient criterion for limiting the length of the test sequence unless \(Z' \) is controllable (otherwise, for a sufficiently large memory, there may still be states that cannot be reached and transitions that cannot be checked by any input sequence). When the memory is finite, as is always the case in practical applications, a controllable stream X-machine model of the implementation will always exist; in the worst case, this can be found by constructing an equivalent machine whose states are the (state, memory) pairs of the original model. Obviously, such a construction will lead to an extremely large upper bound \(n' \). In such cases, additional bounds may be used to limit the size of the test suite, as explained in the penultimate section of the paper. For the time being, however, the test selection strategy will only be based on the upper bound \(n' \) of a controllable model of the implementation.

Consequently, it will be assumed that the IUT can be modelled by a completely defined, controllable, DSXM \(Z' = (\Sigma, \Gamma, Q', M, \Phi, F', q_0', m_0) \) having at most \(n' \) states. The fault domain will contain all such DSXMs; among them, at least one will be functionally equivalent to the specification. The question, how we can characterise when there exists at least one controllable DSXM \(Z' \) for which \(f_Z = f_{Z'} \), is obviously worth investigating.
Example 7.1. Consider \(Z = (\Sigma, \Gamma, Q, M, \Phi, F, q_0, m_0) \) as defined in Example 4.1 and \(Z' = (\Sigma, \Gamma, Q', M, \Phi, F', q_0', m_0) \) with \(Q = \{0, \ldots, k\} \cup \{\text{Error}\}, q_0' = 0 \) and \(F' \) defined by

\[
F'(0, \text{pushSucc}) = 1, \quad F'(0, \text{popErr}) = \text{Error};
\]
\[
F'(i, \text{pushSucc}) = i + 1, \quad F'(i, \text{popSucc}) = i - 1, \quad 1 \leq i \leq k - 1;
\]
\[
F'(k, \text{pushErr}) = \text{Error}, \quad F'(0, \text{popSucc}) = k - 1;
\]
\[
F'(\text{Error}, \text{errId}) = \text{Error} (F' \text{ is undefined elsewhere}).
\]

It can be observed that \(Z' \) is controllable and \(f_Z = f_{Z'} \). Thus the test generation problem can be formulated for \(n' \geq k + 2 \).

Under the above stated conditions, a set of test sequences will be generated that, for every \(Z' \) in the fault domain, can establish whether \(Z' \) is functionally equivalent to \(Z \).

The concepts and results necessary for the construction of the test suite will be gradually introduced in the following four sections. First, Section 8 shows how checking the functional equivalence of the two machines can be reduced to exploring the relationship between their associated FAs. This, in turn, will be investigated through the use of a product machine, defined in Section 9. Next, Section 10 will introduce the concept of a test function as a means of converting sequences of processing functions derived from the product machine into input sequences. Finally, the generation of the test suite will be described in Section 11.

8. Checking realisable sequences

As \(Z \) and \(Z' \) are assumed to have the same type and this is output-distinguishable, the testing process will have to check that the sequences of processing functions allowed by the implementation correspond to those specified. Only the realisable sequences will have to be considered, as the others have no functional role. This idea is captured by the following lemma.

Lemma 8.1. \(f_Z = f_{Z'} \) if and only if \(LR_Z = LR_{Z'} \).

Proof. “\(\Rightarrow \)” Follows from Definition 4.3.

“\(\Leftarrow \)” Let \(p = \phi_1 \ldots \phi_k \in LR_Z \). Then there exist \(\sigma_1, \ldots, \sigma_k \in \Sigma, \gamma_1, \ldots, \gamma_k \in \Gamma, m_1, \ldots, m_k \in M \) such that \(\phi_i(m_{i-1}, \sigma_i) = (\gamma_i, m_i), 1 \leq i \leq k \). Since \(f_Z(\sigma_1 \ldots \sigma_k) = f_{Z'}(\sigma_1 \ldots \sigma_k) \), there exist \(\phi'_1, \ldots, \phi'_k \in \Phi, m'_1, \ldots, m'_k \in M \) such that \(\phi'_i \ldots \phi'_k \in LR_{Z'} \) and \(\phi'_i(m'_{i-1}, \sigma_i) = (\gamma_i, m'_i), 1 \leq i \leq k, \) where \(m'_0 = m_0 \). Since \(\Phi \) is output-distinguishable, by induction on \(i, 1 \leq i \leq k \), it follows that \(\phi'_i = \phi_i \) and \(m'_i = m_i \). Thus \(p \in LR_{Z'} \). Since \(p \) is arbitrarily chosen, \(LR_Z \subseteq LR_{Z'} \). Similarly, \(LR_{Z'} \subseteq LR_Z \), so \(LR_Z = LR_{Z'} \)

Furthermore, since \(Z \) and \(Z' \) are completely defined, it is sufficient just to check that every realisable sequence of processing functions in \(Z' \) can also be found in \(Z \) (or vice versa).

Lemma 8.2. \(LR_Z = LR_{Z'} \) if and only if \(LR_{Z'} \subseteq LR_Z \).

Proof. We provide a proof by contradiction. Assume \(LR_{Z'} \subset LR_Z \). Let \(p = \phi_1 \ldots \phi_k \in LR_Z \setminus LR_{Z'} \). Then there exists \(i, 1 \leq i \leq k - 1 \), such that \(\phi_1 \ldots \phi_i \in LR_{Z'} \) and \(\phi_1 \ldots \phi_i \phi_{i+1} \not\in LR_{Z'} \). Since \(\phi_1 \ldots \phi_i \phi_{i+1} \in R_\Phi(m_0) \), there exist \(\sigma_1, \ldots, \sigma_{i+1} \in \Sigma, \gamma_1, \ldots, \gamma_{i+1} \in \Gamma, m_1 \ldots m_{i+1} \in M \) such that \(\| \phi_1 \ldots \phi_i \| (m_0, \sigma_1 \ldots \sigma_j) = (\gamma_1 \ldots \gamma_j, m_j), 1 \leq j \leq i + 1 \). Since \(Z' \) is completely defined and \(\phi_1 \ldots \phi_i \phi_{i+1} \not\in LR_{Z'} \), there exists \(\phi'_{i+1} \in \Phi \) with \((m_i, \sigma_{i+1}) \in \text{dom} \phi'_{i+1} \) such that \(\phi_1 \ldots \phi_i \phi'_{i+1} \in LR_{Z'} \). Since \(\text{dom} \phi_{i+1} \cap \text{dom} \phi'_{i+1} \neq \emptyset \) and \(Z \) is deterministic, \(\phi_1 \ldots \phi_i \phi'_{i+1} \not\in LR_Z \). Thus \(\phi_1 \ldots \phi_i \phi'_{i+1} \in LR_{Z'} \setminus LR_Z \), so \(LR_{Z'} \subset LR_Z \) does not hold, which is a contradiction.

Consequently, since \(Z' \) is controllable, it is sufficient to check that every sequence of processing functions in the associated FA of \(Z' \) is also accepted by the associated FA of \(Z \).

Lemma 8.3. \(LR_Z = LR_{Z'} \) if and only if \(L_{A_{Z'}} \subseteq L_{A_Z} \).
9. The product machine

As L_{AZ} may contain sequences that are not realisable, the W-method cannot be directly applied to establish the equivalence of the two associated finite automata. Instead, a state-counting approach will be used, which involves the DSXMs.

Proof. We prove that $LR_{Z'} \subseteq LR_Z$ if and only if $L_{AZ'} \subseteq L_{AZ}$. Assume $L_{AZ'} \subseteq L_{AZ}$. Then $L_{AZ'} \cap R_{\Phi}(m_0) \subseteq L_{AZ} \cap R_{\Phi}(m_0)$. Thus $LR_{Z'} \subseteq LR_Z$. Conversely, assume $LR_{Z'} \subseteq LR_Z$. Then $L_{AZ'} \cap R_{\Phi}(m_0) \subseteq L_{AZ} \cap R_{\Phi}(m_0)$. Since Z' is controllable, $L_{AZ'} \cap R_{\Phi}(m_0) = L_{AZ'}$, so $L_{AZ'} \subseteq L_{AZ} \cap R_{\Phi}(m_0)$. Thus $L_{AZ'} \subseteq L_{AZ}$.

By Lemma 8.2, $LR_Z = LR_{Z'}$ if and only if $LR_{Z'} \subseteq LR_Z$. Thus, the result follows. □

Definition 9.1. The product machine formed from $Z = (\Sigma, \Gamma, Q, M, \Phi, F, q_0, m_0)$ and $Z' = (\Sigma, \Gamma, Q', M, \Phi, F', q'_0, m_0)$ is the DSXM $P(Z, Z') = (\Sigma, \Gamma, Q_P, M, \Phi, F_P, (q_0, q'_0), m_0)$ in which $Q_P = (Q \times Q') \cup \{\text{Fail}\}$, $\text{Fail} \notin Q \times Q'$, and F_P is defined by the following rules:

- For $(q, q') \in Q_P$ and $\phi \in \Phi$, $F_P((q, q'), \phi)$ is as follows:
 - If $(q, \phi) \in \text{dom } F$ and $(q', \phi) \in \text{dom } F'$ then $F_P((q, q'), \phi) = (F(q, \phi), F'(q', \phi))$.
 - Else $F_P((q, q'), \phi)$ is undefined.

It can be verified that $P(Z, Z')$ is a deterministic SXM. Furthermore, since Z' is controllable and every sequence of processing functions accepted by $A_{P(Z, Z')}$ is also accepted by $A_{Z'}$, $P(Z, Z')$ is also controllable. Note also that, unlike Z and Z', $P(Z, Z')$ may not be completely defined, since no processing function can be applied from Fail. This is not a problem, however, since it will be sufficient to check whether the Fail state is reachable.

The remainder of this section shows that testing for functional equivalence of Z and Z' corresponds to establishing that the Fail state of the product machine is not reachable.

Lemma 9.1. Given $p \in \Phi^*$, $q \in Q$, $q' \in Q'$, $F^*_P((q_0, q'_0), p) = (q, q')$ if and only if $F^*(q_0, p) = q$ and $F'^*(q'_0, p) = q'$.

Proof. Follows from Definition 9.1 by induction on the length of p. □

Lemma 9.2. Given $p \in \Phi^*$, p reaches Fail in $A_{P(Z, Z')}$ if and only if $p \in L_{AZ'} \setminus L_{AZ}$ and $p = p_1 \phi$ for some $p_1 \in L_{AZ} \cap L_{AZ'}$ and $\phi \in \Phi$.

Proof. By Definition 9.1, p reaches Fail in $A_{P(Z, Z')}$ if and only $p = p_1 \phi$ for some $p_1 \in \Phi^*$, $\phi \in \Phi$ for which there exist $q \in Q$, $q' \in Q'$ such that $F^*_P((q_0, q'_0), p_1) = (q, q')$ and $F_P((q, q'), \phi) = \text{Fail}$. By Lemma 9.1, $F^*_P((q_0, q'_0), p_1) = (q, q')$ if and only if $F^*(q_0, p_1) = q$, $F'^*(q'_0, p_1) = q'$. By Definition 9.1, $F_P((q, q'), \phi) = \text{Fail}$ if and only if $(q, \phi) \notin \text{dom } F$ and $(q', \phi) \in \text{dom } F'$. Thus, p reaches Fail in $A_{P(Z, Z')}$ if and only if $p \in L_{AZ'} \setminus L_{AZ}$ and $p = p_1 \phi$ for some $p_1 \in L_{AZ} \cap L_{AZ'}$ and $\phi \in \Phi$. □

Lemma 9.3. Fail is not reachable in $A_{P(Z, Z')}$ if and only if $L_{AZ'} \subseteq L_{AZ}$.
Proof. $L_{AZ'} \subseteq L_{AZ}$ does not hold if and only if there exist $p \in \Phi^*$, $\phi \in \Phi$ such that $p \in L_{AZ} \cap L_{AZ'}$ and $p\phi \in L_{AZ'} \setminus L_{AZ}$. Thus, by Lemma 9.2, Fail is reachable in $A_{P(Z,Z')}$ if and only if $L_{AZ'} \subseteq L_{AZ}$ does not hold. □

Lemma 9.4. Fail is not reachable in $A_{P(Z,Z')}$ if and only if $LR_Z = LR_{Z'}$.

Proof. Follows from Lemmas 9.3 and 8.3. □

Lemma 9.5. Fail is not reachable in $A_{P(Z,Z')}$ if and only if $f_Z = f_{Z'}$.

Proof. Follows from Lemmas 9.4 and 8.1. □

10. Test function

Suppose we have generated appropriate sequences of processing functions to check whether the Fail state of $A_{P(Z,Z')}$ is reachable. We will then need a mechanism that translates sequences of processing functions into sequences of inputs. This will be called a test function of Z.

Definition 10.1. Suppose Φ is input-uniform. A test function of Z is a function $t : \Phi^* \rightarrow \Sigma^*$ that satisfies the following conditions:

- $t(\varepsilon) = \varepsilon$. (1)
- Let $p \in \Phi^*$ and $\phi \in \Phi$.
 - Suppose $p \in L_{AZ}$ and $(m_0, t(p)) \in \text{dom } p$. Let $(g, m) = (g, m)$, $g \in I^*$, $m \in M$.
 - If there exists $\sigma \in \Sigma$ such that $(m, \sigma) \in \text{dom } \phi$ then $t(p\phi) = t(p)\sigma$, for some σ that satisfies this condition. (2)
 - Else, $t(p\phi) = t(p)$. (3)
 - Otherwise, $t(p\phi) = t(p)$. (4)

The first rule (1) is the base case, stating that the empty path is transformed into the empty input sequence, while the remaining three rules are recursive cases, explaining how $t(p\phi)$ may be defined in terms of $t(p)$. Rules (2) and (3) give the case where $p \in LR_Z$; $t(p)$ is extended by some value σ that triggers ϕ if such a value exists, otherwise $t(p)$ is left unchanged. The final rule (4) states that $t(p)$ need not be extended once it has been determined that $p \notin LR_Z$. In general, a test function of Z is not uniquely determined; many different test functions may exist.

For Z as defined in Example 4.1 and $k = 3$, consider the sequence pushSucc^3. First, the second rule will be applied three times, so

$t(\text{pushSucc}) = e_1$,

$t(\text{pushSucc}^2) = e_1e_2$,

$t(\text{pushSucc}^3) = e_1e_2e_3$.

for some $e_1, e_2, e_3 \in E$. Then the third rule will be applied, so

$t(\text{pushSucc}^4) = e_1e_2e_3$.

Finally, by the last rule,

$t(\text{pushSucc}^5) = e_1e_2e_3$.

One the other hand, for the sequence $\text{pushSucc}^3 \text{errId}^2$, the second rule will be applied four times, so

$t(\text{pushSucc}^3 \text{errId}) = e_1e_2e_3\sigma$,

for some $\sigma \in \Sigma$. Similarly, by the last rule,

$t(\text{pushSucc}^3 \text{errId}^2) = e_1e_2e_3\sigma$.
In general, consider a sequence of processing functions, \(p = \phi_1 \ldots \phi_k \). If \(p \) is contained in \(LR_Z \) then the input-uniformity condition will ensure that the second rule of the definition will be applied for every processing function in the sequence, so \(t(p) \) will be an input sequence \(\sigma_1 \ldots \sigma_j \) that drives \(p \). Otherwise, the second rule will be applied until a prefix \(p_1 = \phi_1 \ldots \phi_j \) of \(p \) is found that is not in \(LR_Z \). If \(p_1 \in R_\phi(m_0) \), then the second rule will be applied once more, so \(t(p_1) = \sigma_1 \ldots \sigma_j \), otherwise the third rule will be used and \(t(p_1) = \sigma_1 \ldots \sigma_{j-1} \). Then the last rule will be applied and the input sequence will extended no further, so \(t(p) = t(p_1) \).

Lemma 10.1. Suppose \(\Phi \) is input-uniform. Let \(t \) be a test function of \(Z \) and \(\phi_1, \ldots, \phi_k \in \Phi \).

- If \(\phi_1 \ldots \phi_k \in LR_Z \) then \(t(\phi_1 \ldots \phi_k) = \sigma_1 \ldots \sigma_k \), for some \(\sigma_1, \ldots, \sigma_k \in \Sigma \) such that \((m_0, \sigma_1 \ldots \sigma_k) \in \text{dom } \| \phi_1 \ldots \phi_k \| \).
- If there is some \(j \), \(1 \leq j \leq k - 1 \), such that \(\phi_1 \ldots \phi_j \in LR_Z \) and \(\phi_1 \ldots \phi_j+1 \in R_\phi(m_0) \setminus LR_Z \) then \(t(\phi_1 \ldots \phi_k) = \sigma_1 \ldots \sigma_{j+1} \), for some \(\sigma_1, \ldots, \sigma_{j+1} \in \Sigma \) such that \((m_0, \sigma_1 \ldots \sigma_{j+1}) \in \text{dom } \| \phi_1 \ldots \phi_{j+1} \| \).
- If there is some \(j \), \(1 \leq j \leq k - 1 \), such that \(\phi_1 \ldots \phi_j \in LR_Z \) and \(\phi_1 \ldots \phi_j+1 \notin R_\phi(m_0) \) then \(t(\phi_1 \ldots \phi_k) = \sigma_1 \ldots \sigma_j \), for some \(\sigma_1, \ldots, \sigma_j \in \Sigma \) such that \((m_0, \sigma_1 \ldots \sigma_j) \in \text{dom } \| \phi_1 \ldots \phi_j \| \).

Proof. Suppose \(\phi_1 \ldots \phi_j \in LR_Z \). Since \(\Phi \) is input-uniform, by the second rule of the definition it follows by induction on \(i \), \(1 \leq i \leq j \), that there exist \(m_1, \ldots, m_j \in M \), \(\sigma_1, \ldots, \sigma_j \in \Sigma \), \(\gamma_1, \ldots, \gamma_j \in \Gamma \) such that \(t(\phi_1 \ldots \phi_j) = \sigma_1 \ldots \sigma_j \) and \(\phi_i(m_1, \sigma_i) = (\gamma_i, m_i), 1 \leq i \leq j \).

Suppose \(\phi_1 \ldots \phi_j \in LR_Z \) and \(\phi_1 \ldots \phi_j+1 \in R_\phi(m_0) \setminus LR_Z \). Since \(\Phi \) is input-uniform, there exists \(\sigma_{j+1} \in \Sigma \) such that \((m_j, \sigma_{j+1}) \in \text{dom } \phi_j+1 \). Then, by the second rule of the definition, \(t(\phi_1 \ldots \phi_{j+1}) = \sigma_1 \ldots \sigma_{j+1} \). Furthermore, by the fourth rule, \(t(\phi_1 \ldots \phi_{j+1}) = t(\phi_1 \ldots \phi_{j+1}) = \sigma_1 \ldots \sigma_{j+1}, i \geq 1 \).

Suppose \(\phi_1 \ldots \phi_j \in LR_Z \) and \(\phi_1 \ldots \phi_j+1 \notin R_\phi(m_0) \). Then, by the third rule of the definition, \(t(\phi_1 \ldots \phi_{j+1}) = \sigma_1 \ldots \sigma_j \). Furthermore, by the fourth rule, \(t(\phi_1 \ldots \phi_{j+1}) = t(\phi_1 \ldots \phi_{j+1}) = \sigma_1 \ldots \sigma_j, i \geq 1 \). \(\Box \)

The role of a test function is to test, using appropriate input symbols, if the realisable sequences of processing functions in \(Z \) have been implemented, hence the name. This idea is formalised by the following lemma.

Lemma 10.2. Suppose \(\Phi \) is input-uniform and output-distinguishable. Let \(t : \Phi^* \rightarrow \Sigma^* \) be a test function of \(Z \) and \(Y \subseteq \Phi^* \). If for all \(s \in t(Y) \), \(f_Z(s) = f_{Z'}(s) \) then \(LR_Z \cap Y = LR_{Z'} \cap Y \).

Proof. Let \(p \in Y \). We prove that \(p \in LR_Z \) if and only if \(p \notin LR_{Z'} \).

Suppose \(p = \phi_1 \ldots \phi_k \in LR_Z \). Then \(t(p) = \sigma_1 \ldots \sigma_k \) and there exist \(\gamma_1, \ldots, \gamma_k \in \Gamma \), \(m_1, \ldots, m_k \in M \) such that \(\phi_i(m_1, \sigma_i) = (\gamma_i, m_i), 1 \leq i \leq k \). Since \(f_Z(\sigma_1 \ldots \sigma_k) = f_{Z'}(\sigma_1 \ldots \sigma_k) \), there exist \(\phi'_1, \ldots, \phi'_k \in \Phi \), \(m'_1, \ldots, m'_k \in M \) such that \(\phi'_i(m'_1, \sigma_i) = (\gamma_i, m_i), 1 \leq i \leq k \), where \(m'_0 = m_0 \). Since \(\Phi \) is output-distinguishable, by induction on \(i \), \(1 \leq i \leq k \), it follows that \(\phi'_i = \phi_i \) and \(m'_i = m_i \). Thus \(p \notin LR_{Z'} \).

Suppose \(p = \phi_1 \ldots \phi_k \in LR_{Z'} \). We prove by contradiction that \(p \in LR_Z \). Assume \(p \notin LR_Z \). Let \(j, 0 \leq j \leq k - 1 \), be the largest integer for which \(p = \phi_1 \ldots \phi_j \in LR_{Z'} \). Then \(\phi_1 \ldots \phi_{j+1} \in R_\phi(m_0) \setminus LR_Z \), so \(t(p) = \sigma_1 \ldots \sigma_{j+1} \) and there exist \(\gamma_1, \ldots, \gamma_{j+1} \in \Gamma \), \(m_1, \ldots, m_{j+1} \in M \) such that \(\phi_i(m_1, \sigma_i) = (\gamma_i, m_i), 1 \leq i \leq j + 1 \). Since \(f_Z(\sigma_1 \ldots \sigma_{j+1}) = f_{Z'}(\sigma_1 \ldots \sigma_{j+1}) \) and \(\phi_1 \ldots \phi_{j+1} \in LR_Z \), analogously to above, it follows that \(\phi_1 \ldots \phi_{j+1} \in LR_Z \), which is a contradiction. \(\Box \)

As \(Z \) and \(Z' \) are completely defined, the input sequence used to check the existence of a sequence of processing functions in the implementation will also check the existence of all its prefixes, as shown by the following lemma.

Lemma 10.3. Suppose \(\Phi \) is input-uniform and output-distinguishable and \(Z \) and \(Z' \) are completely defined. Let \(t : \Phi^* \rightarrow \Sigma^* \) be a test function of \(Z \) and \(Y \subseteq \Phi^* \). If for all \(s \in t(Y) \), \(f_Z(s) = f_{Z'}(s) \) then \(LR_Z \cap \text{pref}(Y) = LR_{Z'} \cap \text{pref}(Y) \).

Proof. Let \(p \in Y \) and \(p_1 \in \text{pref}(p) \). Then \(t(p_1) \in \text{pref}(t(p)) \). Since \(Z \) and \(Z' \) are completely defined, from \(f_Z(t(p)) = f_{Z'}(t(p)) \) it follows that \(f_Z(t(p_1)) = f_{Z'}(t(p_1)) \). Then the result follows from Lemma 10.2 since \(p \) and \(p_1 \) have been arbitrarily chosen. \(\Box \)

Once the product machine \(P(Z, Z') \) has been defined and a mechanism for computing the values of a test function \(t \) is in place, a test suite can be constructed by first generating sequences of processing functions to check whether the
Fail state of $A_{P(Z,Z')}$ is reachable and then transforming them into input sequences through t. The process is detailed in the following section.

11. Test suite generation

The first step in the construction of the test suite is the selection of two sets of sequences of processing functions, S_r and W_r, and of a relation d_r on the states of Z as follows:

- $S_r \subseteq LR_Z$ is a finite set of realisable sequences such that
 - $e \in S_r$ and
 - no state in Z is reached by more than one sequence in S_r, i.e. for every two distinct sequences $p_1, p_2 \in S_r$, $F^*(q_0, p_1) \neq F^*(q_0, p_2)$.
 - S_r will be used to reach r-reachable states in Z.
- $W_r \subseteq \Phi^*$ is a finite set of processing functions. W_r will be used to r-distinguish between r-distinguishable states of Z. W_r is required to be non-empty, so when no sequences are used to r-distinguish between states of Z, we will use $W_r = \{ e \}$ instead of $W_r = \emptyset$. W will contain the empty sequence e.
- $d_r : Q \leftrightarrow Q$ is a relation on the states of Z that satisfies the following condition: for every two states $q_1, q_2 \in Q$, if $(q_1, q_2) \in d_r$ then q_1 and q_2 are r-distinguishable by W_r. The relation d_r identifies the pairs of states that are known to be r-distinguishable by W_r. For simplicity, d_r is required to be symmetric.

Naturally, it is normally desirable that

- S_r is an r-state cover of Z,
- W_r is an r-characterisation set of Z and
- all pairwise r-distinguishable states of Z are known to be r-distinguishable by W_r, i.e. $(q_1, q_2) \in d_r$ if and only if q_1 and q_2 are r-distinguishable, but these restrictions will not be introduced.

The set of all states reached by sequences in S_r is denoted by Q_r, i.e. $Q_r = \{ q \in Q \mid$ there exists $p \in S_r$ such that $F^*(q_0, p) = q \}$. As all sequences in S_r are realisable, all states in Q_r are r-reachable. Furthermore, since $e \in S_r$, the initial state of Z is contained in Q_r.

Let Q_1, \ldots, Q_j denote the maximal sets of states of Z that are known to be pairwise r-distinguishable by W_r, i.e. for every $q_1, q_2 \in Q_i$ and every $q_3 \in Q \setminus Q_i$, $(q_1, q_2) \in d_r$ and $(q_1, q_3) \notin d_r$, $1 \leq i \leq j$. Let also $Q_i' = Q_i \cap Q_r$, $1 \leq i \leq j$.

Example 11.1. Consider Z as defined in Example 4.1 and $k = 3$. As shown earlier, all states of Z are r-reachable and $S_r = \{ e, \text{popErr}, \text{pushSucc}, \text{pushSucc pushSucc} \}$ is an r-state cover of Z. Furthermore, all pairs of states, except (Popped, Loaded) and (Pushed, Loaded), are r-distinguishable and $W_r = \{ \text{errId, popErr, popSucc popErr} \}$ is an r-characterisation set of Z.

Suppose S_r and W_r are the chosen sets of sequences and every r-distinguishable pair of states is known to be r-distinguishable by W_r, i.e. $(q_1, q_2) \in d_r$ if and only if q_1 and q_2 are r-distinguishable. Then there are two maximal sets of states known to be pairwise r-distinguishable by W_r : $Q_1 = \{ \text{Error, Pushed, Popped} \}$ and $Q_2 = \{ \text{Error, Loaded} \}$. Since $Q_r = Q$, $Q_1' = Q_1$ and $Q_2' = Q_2$.

Given a state $q \in Q_r$, let $p_q \in S_r$ denote the sequence in S_r that reaches q. As every state in Q_r is reached by exactly one sequence in S_r, p_q is well defined. Suppose that a test function $t : \Phi^* \to \Sigma^*$ has been defined for all sequences of processing functions in S_r.

Given a state $q \in Q_r$, the set $V(q)$ is defined to consist of all sequences $x \in \Phi^* \setminus \{ e \}$ for which

- $p_q x \in LR_Z$.
- there exists $i, 1 \leq i \leq j$, such that x visits states from Q_i exactly $n' - \text{card}(Q_i') + 1$ times when followed from q in A_Z (the initial state of the path is not included in the counting) and this condition does not hold for any proper prefix of x, i.e.
 - there exists $i, 1 \leq i \leq j$, such that $\text{card}((F^*(q, y) | y \in \text{pref}(x) \setminus \{ e \})) = n' - \text{card}(Q_i') + 1$ and
 - for all $i, 1 \leq i \leq j$, and all $x_1 \in \text{pref}(x) \setminus \{ x \}$, $\text{card}((F^*(q, y) | y \in \text{pref}(x_1) \setminus \{ e \})) < n' - \text{card}(Q_i') + 1$.
Informally, $V(q)$ is defined such that to contain only "minimal" paths of $A_{P(Z,Z)}$ that may reach the Fail state. Such a minimal path will not have visited the same pair of states $((p, p') \in Q \times Q')$ twice and, furthermore, cannot contain pairs of states that have already been reached by the sequences in S_r. If a path x visits states from some Q_i, a tester can use W_r after each prefix of x to distinguish between the corresponding states visited along x in Z'. Consequently, if states from Q_i are visited n_i times along a minimal path x, then n_i distinct states will be visited in Z'. Thus, n_i cannot exceed the upper bound n' on the number of states of Z' plus one (for the Fail state). On the other hand, among the states of Q_i there are $\text{card}(Q_i')$ states that can be reached by sequences from S_r. As S_r will also reach the corresponding states of Z', this will leave $\text{card}(Q_i')$ less pairs of states to explore. Thus, $n_i \leq n' - \text{card}(Q_i') + 1$.

The set $V(q)$ is finite and can be computed, as shown in what follows.

Lemma 11.1. Each sequence in $V(q)$ has length at most $n \cdot n'$.

Proof. Suppose $V(q)$ contains a sequence x of length greater than $n \cdot n'$. Let x_1 be the prefix of x of length $n \cdot n'$. Then for every i, x_1 visits the states of Q_i at most $n' - \text{card}(Q_i')$ times. Since at least one of the sets Q_i' is not empty (it contains the initial state), the maximum number of states visited by x_1 will be $(n - 1)n' + n' - 1 = n \cdot n' - 1$. Thus the length of x_1 is at most $n \cdot n' - 1$, which is a contradiction. □

The set $V(q)$ can be constructed by devising a tree in which each path x from the root q represents a tail-end part of a realisable sequence p_x x. A path meets the termination criterion when it visits states from some Q_i exactly $n' - \text{card}(Q_i') + 1$ times. In this case, the path need not be extended further, so the node will be a leaf. A formal description of the procedure is given below. Note that the procedure not only constructs $V(q)$, but also the values of a test function t for the sequences in $\{p_q\}V(q)$. It will transpire that these values are the actual input sequences used for testing. In what follows $\pi_i : A_1 \times A_2 \rightarrow A_i$ is used to denote the projection on the ith component, $1 \leq i \leq 2$. For simplicity, it is assumed that $t(p_q), m_q = \pi_2(\|p_q\|)(m_0, t(p_q))$ and the sets Q_1, \ldots, Q_j and Q'_1, \ldots, Q'_j have already been determined.

Input $Z, n', q, p_q, t(p_q), m_q, Q_1, \ldots, Q_j$ and $\text{card}(Q'_1), \ldots, \text{card}(Q'_j)$;

$n_1 := 0, \ldots, n_j = 0; X := \emptyset; Y := \{(\varepsilon, \varepsilon), (q, m_q), (n_1, \ldots, n_j)\}$;

Repeat

\begin{itemize}
 \item For y in Y
 \begin{itemize}
 \item $Y := Y \setminus y$; $((p, s), (q, m), (n_1, \ldots, n_j)) := y$;
 \item For ϕ in Φ such that $(q, \phi) \in \text{dom} F$
 \begin{itemize}
 \item Find $\sigma \in \Sigma$ such that $(m, \sigma) \in \text{dom} \phi$
 \item If such σ was found then
 \begin{itemize}
 \item For $i := 1$ to j
 \begin{itemize}
 \item If $F(q, \phi) \in Q_i$ then $n_i' := n_i + 1$
 \item Else $n_i' := n_i$;
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \item If there exists i, $1 \leq i \leq n$, such that $n_i' = n' - \text{card}(Q_i') + 1$ then
 \begin{itemize}
 \item $X = X \cup \{(p\phi, s\sigma)\}$
 \item Else $Y = Y \cup \{(p\phi, s\sigma), (F(q, \phi, \pi_2(\phi(m, \sigma))), (n_1', \ldots, n_j'))\}$
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}

Until $Y = \emptyset$;

$V = \emptyset; TV = \emptyset$;

For x in X
\begin{itemize}
 \item $V = V \cup \{\pi_1(x)\}; TV = (p_q, \pi_1(x), t(p_q) \pi_2(x))$;
\end{itemize}

Output V, TV.

Each iteration of the algorithm involves determining which elements of Y satisfy the termination criterion and thus do not need extending; these are transferred into X. The remaining elements are extended and the iteration continues. Lemma 11.1 ensures that the number of iterations is finite. The algorithm outputs the set $V(q)$ and the values of a test function t for sequences in $\{p_q\}V(q)$.

For Z as defined in Example 4.1, $k = 3, n' = 5, q = \text{Popped}, p_q = \varepsilon, t(p_q) = \varepsilon, m_q = \varepsilon, j = 2, Q_1 = Q'_1 = \{\text{Error, Pushed, Popped}\}$ and $Q_2 = Q'_2 = \{\text{Error, Loaded}\}$, the tree generated by the procedure is represented in
Fig. 4. Each node in the tree has a corresponding state of Z and two values indicating the number of times the path from the root to that node has encountered states from Q_1 and Q_2, respectively (the corresponding memory value is not shown in order to keep the figure simple). The paths in the tree are sequences of processing functions; for simplicity, the input sequences used to drive these functions are omitted. The leaf nodes are in bold. A node is a leaf if the path from the root to it has encountered (after the root) three states that are contained in Q_1 or four states that are contained in Q_2.

Lemma 11.2. For any choice of S_r, W_r and d_r and for every $q \in S_r$, the set $V(q)$ can be computed.

Proof. As the sets Q_r and Q_i, $1 \leq i \leq n$, can be computed from S_r and d_r, respectively, $V(q)$ can be computed using the procedure above. □
Once we have constructed the sets $V(q)$, a test suite can be generated by taking all sequences in $\{p_q\} pref(V(q))$, concatenating them with W_r and applying a test function $t: \Phi^* \rightarrow \Sigma^*$ to every resulting sequence of processing functions.

As the sets $V(q)$ are finite and computable, the set

$$U = \bigcup_{q \in Q_r} \{p_q\} \text{pref}(V(q))W$$

is also finite and computable.

Lemma 11.3. For any choice of S_r, W_r and d_r, the set U is finite and can be computed.

Proof. Follows from Lemmas 11.1 and 11.2. □

The remainder of the section shows that $t(U)$ is a test suite.

Lemma 11.4. Let $p_1, p_2 \in LR_Z$, $q_1, q_2 \in Q$ such that $F^*(q_0, p_1) = q_1$ and $F^*(q_0, p_2) = q_2$. Suppose W_r r-distinguishes between q_1 and q_2 in Z. If for all $s \in t(\{p_1, p_2\}W_r)$, $f_Z(s) = f_Z(s')$ then there exist $q'_1, q'_2 \in Q'$ such that $F^*(q'_0, p_1) = q'_1$ and $F^*(q'_0, p_2) = q'_2$ and W_r distinguishes between q'_1 and q'_2 in A_Z.

Proof. As $p_1, p_2 \in LR_Z$ and $p_1, p_2 \in \text{pref}(\{p_1, p_2\}W_r)$, by Lemma 10.3 $p_1, p_2 \in LR_Z'$, so there exist such q'_1 and q'_2.

Let $m_1, m_2 \in M$, $g_1, g_2 \in \Gamma^*$ such that $\|p_1\|(m_1, t(p_1)) = (g_1, m_1)$ and $\|p_2\|(m_0, t(p_2)) = (g_2, m_2)$. Since W_r r-distinguishes between q_1 and q_2 in Z, $LR_Z(q_1, m_1) \cap W_r \neq LR_Z(q_2, m_2) \cap W_r$. Since for all $s \in t(\{p_1, p_2\}W_r)$, $f_Z(s) = f_Z(s')$, by Lemma 10.2, $LR_Z(q_1, m_1) \cap W_r = LR_Z(q'_1, m_1) \cap W_r$ and $LR_Z(q_2, m_2) \cap W_r = LR_Z(q'_2, m_2) \cap W_r$. Thus $LR_Z(q'_1, m_1) \cap W_r \neq LR_Z(q'_2, m_2) \cap W_r$. Since Z' is controllable, $LA_{Z'}(q'_1) \cap W_r \neq LA_{Z'}(q'_2) \cap W_r$, so W_r distinguishes between q'_1 and q'_2 in A_Z. □

Lemma 11.5. Let $q \in Q$ and $x \in V(q)$. Suppose for all $s \in t(S_rW_r \cup \{p_qx\}W_r)$, $f_Z(s) = f_Z(s')$. Then the path in $A_{P(Z, Z')}$ formed by following x after p_q either contains a loop or meets a state, other than the root state, that has already been reached by some sequence in S_r.

Proof. For simplicity, in what follows we will use $\text{path}_Z(x, p_q)$, $\text{path}_Z(x, p_q)$ and $\text{path}_{Z, Z'}(x, p_q)$ to denote the paths formed by following x after p_q in A_Z, $A_{Z'}$ and $A_{P(Z, Z')}$, respectively. The root states are not included when referring to these paths. First note that, by Lemmas 10.2 and 9.1, such paths also exist in $A_{Z'}$ and $A_{P(Z, Z')}$. We prove the lemma by contradiction. Assume $\text{path}_{Z, Z'}(x, p_q)$ is cycle-free and does not meet any state reached by sequences in S_r, other than the root state. Let i be such that $\text{path}_{Z}(x, p_q)$ visits states from Q_i exactly $n' - \text{card}(Q'_i) + 1$ times. By Lemma 11.4, since W_r pairwise r-distinguishes between the states in Q_i, it will also pairwise distinguish between the corresponding states in $A_{Z'}$. Thus $\text{path}_{Z}(x, p_q)$ will visit at least $n' - \text{card}(Q'_i) + 1$ distinct states and the sequences in S_r will reach at least other $\text{card}(Q'_i)$ states. This implies that Z' has more than n' states, which is a contradiction. □

Lemma 11.6. Let A be an FA over input alphabet Σ. Suppose $Y \subseteq \Sigma^*$ is a set of input sequences such that

- $\varepsilon \in \Sigma^*$,
- every state of Z that is reached by a sequence in $Y \Sigma$ has already been reached by some sequence in Y.

Then every reachable state of A is reached by some sequence in Y.

Proof. We provide a proof by contradiction. Let Q_Y be the set of states reached by sequences in Y. Suppose there exists a reachable state q of A such that $q \notin Q_Y$. Since $\varepsilon \in Y$, the initial state of A is contained in Q_Y, so q is reachable from the states in Q_Y. Let $s = s', \sigma \in \Sigma, s \in S'$, be the shortest input sequence that reaches q from a state in Q_Y and let $q_1 \in Q_Y$ be that state (if more than one such sequence and state exist then the choice is arbitrary). Let also q_2 be the state reached by σ from q_1. Then q_2 can be reached by some sequence in $Y \Sigma$, so, by the lemma hypothesis, $q_2 \in Q_Y$. Thus s' is a sequence shorter than s that reaches q from a state in Q_Y. This provides a contradiction, as required. □
Lemma 11.7. If for all \(s \in t(U) \), \(f_Z(s) = f_{Z'}(s) \) then the Fail state of \(A_{P(Z,Z')} \) is not reachable.

Proof. Given \(q \in Q_r \), let \(V_{\text{pref}}(q) = \text{pref}(V(q)) \setminus V(q) \). Since \(\varepsilon \notin V(q) \), \(\varepsilon \in V_{\text{pref}}(q) \). From the construction of \(V(q) \), it follows that \(\{p_q\}V_{\text{pref}}(q) \cap LR_Z \subseteq \{p_q\}\text{pref}(V(q)) \). Let \(E = \bigcup_{q \in Q_r} \{p_q\}\text{pref}(V(q)) \) and \(E_{\text{pref}} = \bigcup_{q \in Q_r} \{p_q\}V_{\text{pref}}(q) \). Then \(E_{\text{pref}} \cap LR_Z \subseteq E \).

We prove that \(E_{\text{pref}} \cap LA_{P(Z,Z')} \subseteq E \). Let \(p \in E_{\text{pref}} \cap LA_{P(Z,Z')} \). Since \(p \in LA_{P(Z,Z')} \), by Lemmas 9.1 and 9.2 either

1. \(p \in LA_Z \cap LA_{Z'}^{\varepsilon} \), or
2. \(p \in LA_{Z'} \setminus LA_Z \) and \(p = p_1 \phi \) for some \(p_1 \in LA_Z \cap LA_{Z'}^{\varepsilon} \), and \(\phi \in \Phi \).

Thus we have the following two cases:

1. \(p \in E_{\text{pref}} \cap LA_Z \cap LA_{Z'}^{\varepsilon} \). Since \(E_{\text{pref}} \cap LA_Z \cap LA_{Z'}^{\varepsilon} \subseteq E_{\text{pref}} \cap LA_Z \cap R_{\Phi}(m_0) = E_{\text{pref}} \cap LR_Z \subseteq E \), it follows that \(p \in E \).
2. \(p \in LA_{Z'} \setminus LA_Z \) and \(p = p_1 \phi \) for some \(p_1 \in E_{\text{pref}} \cap LA_Z \cap LA_{Z'}^{\varepsilon} \), and \(\phi \in \Phi \). We prove by contradiction that \(p \in LA_{P(Z,Z')} \). Assume \(p \notin LA_{P(Z,Z')} \). Since \(p \in R(m_0) \), there exist \(s \in \Sigma^* \), \(\sigma \in \Sigma \), \(g \in I^* \), \(\gamma \in \Gamma \), \(m, m' \in M \) such that \(||p_1||(m_0,s) = (g, m) \) and \(\phi(m, \sigma) = (\gamma, m') \). Since \(Z \) is completely defined and \(p \notin LR_Z \), there exists \(\phi' \in \Phi \) with \((m, \sigma) \in \text{dom} \phi' \) such that \(|p_1| \phi' \in LR_Z \). Since \(\text{dom} \phi \cap \text{dom} \phi' \neq \emptyset \) and \(Z' \) is deterministic, \(p_1 \phi' \notin LR_Z' \). On the other hand, \(p_1 \phi' \in E_{\text{pref}} \cap LR_Z \), so \(p_1 \phi' \in E \). By Lemma 10.3, \(LR_Z \cap E = LR_Z' \cap E \). Since \(E \subseteq LR_Z \), it follows that \(E \subseteq LR_Z' \) and \(p_1 \phi' \in LR_Z' \), which provides a contradiction, as required.

By Lemma 11.5, every state of \(A_{P(Z,Z')} \) that is reached by a sequence in \(E \) is also reached by some sequence in \(E_{\text{pref}} \). As \(E_{\text{pref}} \cap LA_{P(Z,Z')} \subseteq E \), every state of \(A_{P(Z,Z')} \) that is reached by a sequence in \(E_{\text{pref}} \) has already been reached by some sequence in \(E_{\text{pref}} \). Furthermore, since all sets \(V_{\text{pref}}(q) \) contain the empty sequence \(\varepsilon \), \(S_r \subseteq E_{\text{pref}} \). Then, by Lemma 11.6, \(E_{\text{pref}} \) reaches all reachable states of \(A_{P(Z,Z')} \). Thus, if the Fail state was reachable, then it would be reached by some sequence in \(E_{\text{pref}} \). Hence Fail is not reachable. \(\square \)

Theorem 11.1. The Fail state of \(A_{P(Z,Z')} \) is not reachable if and only if for all \(s \in t(U) \), \(f_Z(s) = f_{Z'}(s) \).

Proof. Follows from Lemmas 11.7 and 9.5. \(\square \)

Theorem 11.2. \(f_Z = f_{Z'} \) if and only if for all \(s \in t(U) \), \(f_Z(s) = f_{Z'}(s) \).

Proof. Follows from Theorem 11.1 and Lemma 9.5. \(\square \)

Note that if all the states of \(Z \) are \(r \)-reachable and pairwise \(r \)-distinguishable, \(S_r \) is an \(r \)-state cover of \(Z \), \(W_r \) is an \(r \)-characterisation set of \(Z \) and all states of \(Z \) are known to be pairwise \(r \)-distinguishable by \(W_r \), then

\[
U = (S_r \Phi[n' - n + 1] \cap LR_Z)W_r
\]

so the method reduces to an extension of the \(W \)-method to DSXMs. This particular case is a generalisation of the result given in [33], which extends the \(W \)-method only to controllable DSXM specifications.

On the other extreme, if \(S_r = \{\varepsilon\} \) and \(W_r = \{\varepsilon\} \) then \(U = \Phi[n'n] \). In most practical applications, however, the state counting approach will produce far fewer test sequences.

12. Complexity

The final question that needs to be addressed is concerned with the size of the generated test suite and the complexity of the test generation algorithm. For \(U = S_r \Phi[n' - n + 1]W \), as given by the application of the \(W \)-method to the associated finite automaton, the number of sequences in \(U \) is at most \(n^2 \cdot k^{n' - n + 1} \) and the total length of all sequences in \(U \) is at most \(n^2 \cdot n' \cdot k^{n' - n + 1} \), where \(k = \text{card}(\Phi) \). Typically, only a small fraction of the sequences in \(S_r \Phi[n' - n + 1] \)
are realisable, so the actual size of $U = (S_r \Phi[n'-n+1] \cap LR_Z)W$ is significantly lower. In the worst case, when $S_r = W_r = \{\varepsilon\}$, the upper bounds are proportional to $k^{n'-n}$. However, this extreme is not normally encountered in practice. In usual applications, all states will be r-reachable and there will be (at most) only a few pairs of states that are not r-distinguishable.

As each step of the test generation algorithm selects an input symbol and computes the next memory value, the complexity of this algorithm will be proportional to the total length of all sequences in U, the number of input symbols and the effort required to compute the new memory. Thus, in the case where all the states of Z are r-reachable and pairwise r-distinguishable, S_r is an r-state cover, W_r is an r-characterisation set of Z and all states of Z are known to be pairwise r-distinguished by W_r, the complexity will be no more than $C \cdot r \cdot n^2 \cdot n' \cdot k^{n'-n+1}$, where $r = \text{card}(\Sigma)$ and C is the maximum effort needed by a processing function to compute the next memory value, given the input and the current memory.

Clearly, the size of the test suite and the complexity of the test generation algorithm can be reduced by designing stream X-machines in which all states are pairwise r-distinguishable. Consider again the stream X-machine specification Z given in Example 4.1. For $k \geq 4$, there are no pairwise r-distinguishable states among Popped, Loaded, Pushed, so Z is not a suitable specification for deriving test suites. On the other hand, the system can be redesigned by considering states for empty, full and partial filled stack and splitting the $popSucc$ and $pushSucc$ functions accordingly, as shown in Fig. 5 (i.e. $popEmpty$ produces an empty stack, whereas $popNotEmpty$ produces a non-empty stack, etc.). It can be observed that the states of the revised stream X-machine specification Z_{rev} are pairwise r-distinguishable and that $W_r = \{\text{errId}, pushErr, popErr\}$ is an r-characterisation set of Z_{rev}.

13. Test size reduction

From the above formulas, it can be observed that the size of the test suite depends exponentially on the difference between the upper bound n' on the number of states of Z' and the number n of states of Z. As Z' is assumed to be controllable, extremely large values of n' may sometimes be needed (in the worst case, the number of states of Z' may be proportional to the size of the memory). In such cases, the size of the test suite can be drastically reduced by taking into account an additional upper bound. Given Z' in the fault domain, we define $v_{Z'}$ as the maximum number of states in Z' that have attainable memory values in common, i.e. $v_{Z'} = \max_{m \in \text{MAtt}(q')} \text{card}\{q' \in Q'| m \in \text{MAtt}(q')\}$. Typically, when the number of states $n'_{Z'}$ of Z' is proportional to the size of the memory, the value of $v_{Z'}$ is low. For Z' as defined in Example 7.1, $n'_{Z'} = k + 2$, while $v_{Z'} = 2$. An upper bound v on $v_{Z'}$ can be used to prune the sequences in $V(q)$, $q \in Q_r$, as explained in what follows.

- Consider the procedure for generating the set $V(q)$. Let x be a path from q that does not yet satisfy the termination criterion and will normally have to be extended. Suppose that there is a state q_x in the specification Z and a memory
value \(m_x \) such that the application of \(x \) from \(q \) in \(Z \) has produced the memory value \(m_x \) for \(v + 1 \) times when visiting the state \(q_x \). As \(m_x \) may appear in at most \(v \) states of \(Z' \), the path in \(A_P(Z,Z') \) formed by following \(x \) after \(p_q \) will contain a loop, so it need not be extended any further. Furthermore, since it has been established that the path in \(A_P(Z,Z') \) contains a loop without having to distinguish between the states of \(Z' \), the sequence \(p_qx \) need not be concatenated with \(W_r \). Thus, the test sequence can be constructed by simply applying a test function \(t \) to the sequence \(p_qx \). For instance, for \(Z \) as defined in Example 4.1, \(q = Popped \), and \(p_q = \varepsilon \), consider \(v = 2 \). Then the sequence \(x = \text{pushSucc popSucc pushSucc popSucc} \) need not be extended since it has visited the state \(q_x = Popped \) three times and each time has produced the memory value \(m_x = \varepsilon \).

- In the light of the above observation, the construction of the test function can be enhanced so that, each time a sequence \(x \) is extended with a processing function \(\phi \), in the formula \(t(p_qx\phi) = (t(p_qx))\sigma \), the algorithm will select,
from the possible candidates, the input σ that yields the most frequent memory value produced by the path x when visiting the final state of $pq_x \phi$. Consider, in our example, $q = Loaded$, $p_q = \text{pushSucc}$, $t(p_q) = e_1$ with $e_1 \in E$ and the path $x = \text{pushSucc popSucc popSucc pushSucc}$ from q. Then $t(p_q x) = e_1 e_2 \text{rem rem} e_1$ for some $e_2 \in E$, so the path x from q has visited the state $q_x = Loaded$ three times and each time has produced the memory value $m_x = e_1$. Thus x need not be extended.

Following these remarks, the tree for $V(\text{Popped})$ can be pruned as shown in Fig. 6. The leaf nodes resulting from the above pruning strategy are in dashed line.

14. Conclusions

This paper provides a strong generalisation of the existing stream X-machine based method, which removes from the specification the very restrictive controllability requirement and replaces it with input-uniformity. The new design for test conditions (output-distinguishability and input-uniformity) can be naturally introduced into a stream X-machine specification, without affecting the system functionality, so the generalised method can be applied to virtually any realistic stream X-machine specification.

As a consequence of removing the controllability requirement from the specification, the test generation algorithm uses a state-counting approach, rather than being based on Chow’s W-method. The test suites generated using a state-counting strategy may be significantly larger than those given by the W-method, but, in practice, the extra effort spent for the application of a larger test suite is often exceeded by the effort associated with the process of introducing the extra functionality required by the controllability requirement and of removing this extra functionality after testing has been completed. Furthermore, in the case of large upper bounds on the number of states of the controllable implementation, the test size can be reduced by considering additional bounds.

Further work involves a similar generalisation for the complete stream X-machine based testing method [31], which enables the testing of the processing functions to be integrated into the testing of the overall system. The generalisation of the testing method based on non-deterministic stream X-machine specifications [36] may also be considered.

Acknowledgements

The author would like to thank the anonymous reviewers, whose comments have improved the presentation of this paper.

References