
JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.1 (1-24)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Learning finite cover automata from queries

Florentin Ipate ∗

Department of Computer Science, University of Pitesti, Str. Targu din Vale 1, 0300 Pitesti, Romania

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 June 2008
Received in revised form 29 March 2011
Accepted 7 April 2011
Available online xxxx

Keywords:
Learning from queries
Finite automata
Automata inference
Deterministic finite cover automata

Learning regular languages from queries was introduced by Angluin in a seminal paper
that also provides the L∗ algorithm. This algorithm, as well as other existing inference
methods, finds the exact language accepted by the automaton. However, when only finite
languages are used, the construction of a deterministic finite cover automaton (DFCA) is
sufficient. A DFCA of a finite language U is a finite automaton that accepts all sequences
in U and possibly other sequences that are longer than any sequence in U . This paper
presents an algorithm, called Ll , that finds a minimal DFCA of an unknown finite language
in polynomial time using membership and language queries, a non-trivial adaptation of
Angluin’s L∗ algorithm. As the size of a minimal DFCA of a finite language U may be much
smaller than the size of the minimal automaton that accepts exactly U , Ll can provide
substantial savings over existing automata inference methods.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Finite state machines are established means of modeling computer systems; powerful techniques for model-checking
[1] and conformance testing from finite state machines [2] also exist. In practice, however, state based models are rarely
produced and maintained during system development, hence their benefits can rarely be exploited. When the source code
is not available or is difficult to analyze, the only means of constructing a model is to infer it from observations of the
external behavior of the system.

Learning regular languages from queries was introduced by Angluin in [3]; the paper also provides a learning algorithm,
called L∗ . The L∗ algorithm infers a regular language, in the form of a deterministic finite automaton (DFA) from the answers
to a finite set of membership queries and equivalence queries. A membership query asks whether a certain input sequence is
accepted by the system under test or not. In addition to membership queries, L∗ uses equivalence queries to check whether
the learning algorithm is completed. The equivalence oracle provides counterexamples if the automaton constructed from
the information available so far does not match the given language. Gold [4] has shown that finding a minimum DFA
consistent with an arbitrary set of positive and negative examples is NP-hard. The learning algorithm has the advantage of
being able to select the examples for the membership queries, thus the set of examples used to help construct the DFA is
not arbitrary. Using equivalence queries in addition to membership queries, the L∗ algorithm can learn finite automata in
polynomial time in its number of states.

Several versions of the L∗ algorithm have been proposed [3,5–7]. Hungar et al. [8] study domain-specific optimizations
to the L∗ algorithm, including optimizations for prefix-closed languages. Berg et al. [9] modify the L∗ algorithm so that its

* Fax: +40 248 216448.
E-mail address: florentin.ipate@ifsoft.ro.
0022-0000/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2011.04.002

http://dx.doi.org/10.1016/j.jcss.2011.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:florentin.ipate@ifsoft.ro
http://dx.doi.org/10.1016/j.jcss.2011.04.002

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.2 (1-24)

2 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
complexity grows not with the size of the alphabet, but only with the size of a certain symbolic representation of the DFA.
Passive automata inference methods (in which a set of training data is supplied to the algorithm for model construction)
also exist [10–14] and have been shown to be effective software engineering tools.

The aforementioned algorithms aim to infer the exact regular language accepted by a finite automaton. However, in many
applications of finite automata only finite languages are used. The number of states of a DFA that accepts a finite language
is at least one more than the length of the longest sequence in the language and may be exponentially large in this length.
On the other hand, if we do not restrict the automaton to accept only the given finite language, but allow it to accept extra
sequences that are longer than the longest sequence in the language, then the number of its states may be much smaller.
If the maximum length of the sequences in the language is known then an additional counter can be used to keep track of
the length of the sequences processed, and so such a model (called in what follows a cover automaton) will be sufficient.

Informally, a deterministic finite cover automaton (DFCA) of a finite language U , as defined by Câmpeanu et al. [15,16], is a
DFA that accepts all sequences in U and possibly other sequences that are longer than any sequence in U . A minimal DFCA
of U is a DFCA of U having the least number of states. In this paper we use a slightly more general concept: given a finite
language U and an integer l, greater than or equal to the longest sequence(s) in U , a DFCA of U w.r.t. l is defined to be a
finite automaton that accepts all sequences in U and possibly other sequences that are longer than l.

In this paper we present an algorithm, called Ll , for learning finite cover automata: given an unknown finite set U and a
known integer l that is greater than or equal to the length of the longest sequence(s) in U , the Ll algorithm will construct
a minimal DFCA of U w.r.t. l. Analogously to L∗ , the Ll algorithm will use membership queries and language queries to find
the automaton in polynomial time. However, the adaptation of Angluin’s L∗ algorithm to the case of finite cover automata
is not trivial.

Before proceeding, let us comment on the usefulness of the proposed algorithm. Naturally, a DFCA of U w.r.t. l can
be obtained by first using L∗ to construct the minimal DFA of U and then converting the obtained DFA into a minimal
DFCA, using existing algorithms [15–21]. Clearly, the most expensive operations performed during the execution of L∗ are
the equivalence queries; the L∗ algorithm will perform at most nU such queries, where nU denotes the number of states
of the minimal DFA that accepts U . Analogously, it will be shown that at most n queries of this type will be required by
the Ll algorithm; in this case, however, n will denote the number of states of a minimal DFCA. Therefore, Ll will provide
a substantial improvement when n � nU . Furthermore, Ll will also eliminate the need for a conversion step (in which the
minimal DFA that accepts U is transformed into a minimal DFCA), the time complexity of which also depends on nU (the
best known algorithm [19] requires O (nU lognU) time).

The paper is structured as follows. Section 2 introduces automata related concepts and results to be used later in the
paper. Section 3 describes Angluin’s L∗ algorithm for learning regular sets. The proposed algorithm for learning finite cover
automata is presented and analyzed in the next four sections: Section 4 introduces the necessary concepts and presents the
Ll algorithm; Section 5 shows that the constructions made in the previous section are correct, while Section 6 proves that
the algorithm will produce a correct DFCA; termination and complexity issues are discussed in Section 7. Conclusions are
drawn and future work is outlined in the final section.

2. Preliminaries

This section briefly presents deterministic finite automata and related concepts and results that will be used later in the
paper.

Before continuing, we introduce the notation used in the paper. For a finite alphabet A, A∗ denotes the set of all finite
sequences with members in A. ε denotes the empty sequence. For a sequence a ∈ A∗ , ‖a‖ denotes the length (number of
symbols) of a; in particular ‖ε‖ = 0. For a finite set of sequences U ⊆ A∗ , ‖U‖ denotes the length of the longest sequence(s)
in U . For a,b ∈ A∗ , ab denotes the concatenation of sequences a and b. an is defined by a0 = ε and an = an−1a, n � 1. For
U , V ⊆ A∗ , U V = {ab | a ∈ U , b ∈ V }; Un is defined by U 0 = {ε} and Un = Un−1U , n � 1. A[n] = ⋃

0�i�n Ai denotes the sets
of sequences of length less than or equal to n with members in the alphabet A. For a sequence a ∈ A∗ , b ∈ A∗ is said to be
a prefix of a if there exists a sequence c ∈ A∗ such that a = bc. For a sequence a ∈ A∗ , b ∈ A∗ is said to be a suffix of a if
there exists a sequence c ∈ A∗ such that a = cb. For a finite set A, card(A) denotes the number of elements in A.

2.1. Finite automata – general concepts

A deterministic finite automaton (DFA) M is a tuple (A, Q ,q0, F ,h), where:

• A is the finite input alphabet;
• Q is the finite set of states;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states;
• h is the next-state, h : Q × A −→ Q .

A DFA is usually described by a state-transition diagram, see for example Fig. 1. In graphical representations throughout this
paper, final states will be drawn in double line, whereas non-final states will be drawn in single line.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.3 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 3
Fig. 1. The minimal DFA that accepts U (l).

The next-state function h can be extended to a function h : Q × A∗ −→ Q defined by:

• h(q, ε) = q, q ∈ Q ;
• h(q, sa) = h(h(q, s),a), q ∈ Q , s ∈ A∗ , A ∈ A.

For simplicity, the same name h is used for the next-state function and for the extended function.
Given q ∈ Q , the set Lq

M is defined by Lq
M = {s ∈ A∗ | h(q, s) ∈ F }. When q is the initial state of M , the set is called the

language accepted by M and the simpler notation LM is used.
A state q ∈ Q is called reachable if there exists s ∈ A∗ such that h(q0, s) = q. M is called reachable if all states of M are

reachable.
Given Y ⊆ A∗ , two states q1,q2 ∈ Q are called Y -equivalent if Lq1

M ∩ Y = Lq2
M ∩ Y . Otherwise q1 and q2 are called Y -

distinguishable. If Y = A∗ then q1 and q2 are simply called equivalent or distinguishable, respectively. Two DFAs are called
(Y -)equivalent or (Y -)distinguishable if their initial states are (Y -)equivalent or (Y -)distinguishable, respectively.

A DFA M is called reduced if every two distinct states of M are distinguishable.
A DFA M is called minimal if any DFA that accepts LM has at least the same number of states as M .
A DFA M is minimal if and only if M is reachable and reduced. This is a well-known result, for a proof see, for exam-

ple, [22].
Two DFAs are said to be isomorphic if one can be obtained from the other by renaming the state set. That is, given DFAs

M = (A, Q ,q0, F ,h) and M ′ = (A, Q ′,q′
0, F ′,h′), g : Q −→ Q ′ is called an isomorphism if:

• g is bijective;
• g(q0) = q′

0;
• for every q ∈ Q and a ∈ A, g(h(q,a)) = h′(g(q),a);
• for every q ∈ Q , q ∈ F if and only if g(q) ∈ F ′ .

For any two minimal DFAs M and M ′ , LM = LM′ if and only if M and M ′ are isomorphic. In other words, there is an
unique (up to a renaming of the state space) minimal DFA that accepts a given regular language. This is a well-known result,
for a proof and for DFA minimization techniques see, for example, [22].

2.2. Deterministic finite cover automata

Given a finite language U ⊆ A∗ and a positive integer l that is greater than or equal to the length of the longest se-
quence(s) in U , a deterministic finite cover automaton (DFCA) of U w.r.t. l is a DFA M that accepts all sequences in U and
possibly other sequences that are longer than l, i.e. LM ∩ A[l] = U . A DFCA M of U w.r.t. l is called minimal if any DFCA of U
w.r.t. l has at least the same number of states as M .

Naturally, a DFA that accepts a finite language U is also a DFCA of U w.r.t. any l � ‖U‖. Consequently, the number of
states of a minimal DFCA of U w.r.t. l cannot exceed the number of states of the minimal DFA that accepts U . Furthermore,
the size of a minimal DFCA of U w.r.t. l can be much smaller than the size of the minimal DFA that accepts U . Consider,
for example, U (l) = {aib j | i � 0, j � 0, i + j � l} for l � 2. The minimal DFA that accepts U (l) will have 2l + 1 states: one
final state corresponding to the empty sequence, two final states corresponding to every sequence of length i, 1 � i � l − 1
(one state for when the sequence is composed only of a’s and one state for when the last input read is a b), one final
state corresponding to sequences of length l and one non-final state; for example, the minimal DFA that accepts U (4) is as
represented in Fig. 1. On the other hand, a DFCA of U (l) w.r.t. l � 2 may have only 3 states, as shown in Fig. 2.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.4 (1-24)

4 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 2. A minimal DFCA of U (l) w.r.t. l.

Fig. 3. A minimal DFCA of U (2) w.r.t. 2.

Unlike the case in which the acceptance of the exact language is required, the minimal DFCA is not necessarily unique
(up to a renaming of the state space). Consider U (2) = {aib j | i � 0, j � 0, i + j � 2} (the case l = 2 of the language
defined above) and M and M ′ as represented in Figs. 2 and 3, respectively. M and M ′ are both DFCAs of U (2) w.r.t. l = 2.
Furthermore, it can be observed that no DFCA of U (2) w.r.t. 2 with less states exists, and so M and M ′ are minimal DFCAs
of U (2) w.r.t. 2. However, M and M ′ are not isomorphic.

The concept of DFCA has been studied in different contexts and for different purposes [23–25] and several algorithms
for constructing a minimal DFCA in polynomial time (in the number of states of the original DFCA, supplied as input to
the algorithm) exist [15–21]. The concept has also been extended to more complex state-based formalisms such as stream
X-machines [26].

3. The L∗ algorithm for learning regular sets

In this section we present Angluin’s L∗ algorithm for learning regular languages. We use U ⊆ A∗ to denote the unknown
regular language to be learned. In this algorithm, a so-called learner, who initially knows nothing about U (the alphabet
A is assumed to be known to the learner) is trying to learn U by asking queries to a teacher and an oracle. Two kinds of
queries are used:

• Membership queries, in which the learner is asking the teacher whether a certain input sequence is contained in U . The
results of these queries are stored in a so-called observation table. Periodically, a DFA will be constructed from the
observation table.

• Equivalence queries, in which the learner is asking the oracle whether the constructed DFA M is correct, that is it
accepts U . The oracle will answer yes if M is correct, or else supply a counterexample t , which belongs to either U \ LM
or to LM \ U . The counterexample will be then used to modify the observation table.

Ultimately, the algorithm produces a minimal DFA of U .
The algorithm keeps an observation table, represented by a mapping T from a set of finite sequences to {0,1}. The func-

tion T is defined by T (u) = 1 if u ∈ U and T (u) = 0 if u /∈ U . The input sequences in the table are formed by concatenating
an element from the set S ∪ S A with an element from the set W , where S is a non-empty, finite, prefix-closed set of
sequences and W is a non-empty, finite, suffix-closed set of sequences. The table can be represented by a two-dimensional
array with rows labeled by elements of S ∪ S A and columns labeled by elements of W . The entry in row s ∈ S ∪ S A and
column w ∈ W contains T (sw). In graphical representations (e.g. Table 1), a double horizontal line will be used to sepa-
rate the rows labeled with elements of S from the rows labeled with elements of S A \ S . The row of the table labeled by
s ∈ S ∪ S A is denoted by row(s). In the initial observation table, S = W = {ε}. Thus, the initial observation table has one
column and 1 + card(A) rows.

Consider, for example, the case in which A = {a,b} and U is the finite set U = {aa,bb,bab}. The initial observation table
(Table 1) has one column and 3 rows.

Two properties of an observation table are defined. An observation table is said to be consistent if whenever s1, s2 ∈ S
satisfy row(s1) = row(s2), for all a ∈ A, row(s1a) = row(s2a). An observation table is said to be closed if for all s ∈ S A, there
exists t ∈ S such that row(s) = row(t). Table 1 is both consistent and closed.

If an observation table is consistent and closed, the DFA corresponding to the table, denoted M(S, W , T) =
(A, Q ,q0, F ,h), is defined as follows:

• Q = {row(s) | s ∈ S};
• q0 = row(ε);

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.5 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 5
• F = {row(s) | s ∈ S, T (s) = 1};
• h(row(s),a) = row(sa), s ∈ S , a ∈ A.

If the observation table is closed and consistent then the elements of M(S, W , T) are well defined [3].
We can now give the learning algorithm L∗ .

Set S = {ε} and W = {ε}.
Construct the initial observation table using membership queries for ε and
for every a ∈ A.
Repeat

While the observation table is not closed or not consistent do
If the observation table is not consistent then

Find s1, s2 ∈ S , a ∈ A, w ∈ W such that row(s1) = row(s2) and
T (s1aw) �= T (s2aw).
Add aw to W .
Extend T to (S ∪ S A)W using membership queries.

If the observation table is not closed then
Find s ∈ S , a ∈ A such that row(sa) �= row(t) ∀t ∈ S .
Add sa to S .
Extend T to (S ∪ S A)W using membership queries.

Construct M(S, W , T).
Perform an equivalence query with M(S, W , T).
If answer is “no” with counterexample t then

Add t and its prefixes to S .
Extend T to (S ∪ S A)W using membership queries.

Until answer is “yes” from equivalence query.
Return M(S, W , T).

We illustrate the execution of the algorithm with an example.

Example 3.1. Consider again A = {a,b} and U = {aa,bb,bab}, as above. The initial observation table is Table 1. For the sake
of clarity, in what follows each extension of the observation table is regarded as a separate step of the algorithm.

Table 1
Example 3.1: initial observation table.

T ε

ε 0

a 0
b 0

Step 1: The observation table is consistent and closed and so the DFA M(S, W , T) corresponding to the table is con-
structed. This is the DFA with one, non-final, state. The equivalence query fails (i.e. M(S, W , T) does not accept U) and a
counterexample is produced. Let us assume the counterexample is aa. Then a and aa are added to S and, consequently, ab,
aaa and aab are added to S \ S A. Table 2 is the resulting observation table.

Table 2
Example 3.1: observation table at step 1.

T ε

ε 0
a 0
aa 1

b 0
ab 0
aaa 0
aab 0

Step 2: The observation table is closed, but not consistent: s1 = ε, s2 = a, α = a and w = ε satisfy row(s1) = row(s2), but
T (s1αw) �= T (s2αw). Thus, αw = a is added to W . Table 3 is the resulting observation table.

Step 3: The observation table is consistent and closed and so the DFA M(S, W , T) corresponding to the table is con-
structed. This is as represented in Fig. 4. The equivalence query fails and a counterexample is produced. Let us assume the
counterexample is bb. Then b and bb are added to S . Table 4 is the resulting observation table.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.6 (1-24)

6 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
Table 3
Example 3.1: observation table at step 2.

T ε a
ε 0 0
a 0 1
aa 1 0

b 0 0
ab 0 0
aaa 0 0
aab 0 0

Fig. 4. Example 3.1: the DFA constructed at step 3.

Table 4
Example 3.1: observation table at step 3.

T ε a
ε 0 0
a 0 1
b 0 0
aa 1 0
bb 1 0

ab 0 0
ba 0 0
aaa 0 0
aab 0 0
bba 0 0
bbb 0 0

Step 4: The observation table is closed, but not consistent: s1 = ε , s2 = b, α = a and w = a satisfy row(s1) = row(s2), but
T (s1αw) �= T (s2αw). Thus, αw = aa is added to W . Table 5 is the resulting observation table.

Table 5
Example 3.1: observation table at step 4.

T ε a aa
ε 0 0 1
a 0 1 0
b 0 0 0
aa 1 0 0
bb 1 0 0

ab 0 0 0
ba 0 0 0
aaa 0 0 0
aab 0 0 0
bba 0 0 0
bbb 0 0 0

Step 5: The observation table is consistent and closed and so the DFA M(S, W , T) corresponding to the table is con-
structed. This is as represented in Fig. 5. The equivalence query fails and a counterexample is produced. Let us assume the
counterexample is abb. Then abb and its prefixes are added to S . Table 6 is the resulting observation table.

Step 6: The observation table is closed, but not consistent: s1 = b, s2 = ab, α = b and w = ε satisfy row(s1) = row(s2),
but T (s1αw) �= T (s2αw). Thus, αw = b is added to W . Table 7 is the resulting observation table.

Step 7: The observation table is consistent and closed and so the DFA M(S, W , T) corresponding to the table is con-
structed. This is as represented in Fig. 6. The equivalence query fails and a counterexample is produced. Let us assume the
counterexample is baab. Then baab and its prefixes are added to S . Table 8 is the resulting observation table.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.7 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 7
Fig. 5. Example 3.1: the DFA constructed at step 5.

Table 6
Example 3.1: observation table at step 5.

T ε a aa

ε 0 0 1
a 0 1 0
b 0 0 0
aa 1 0 0
ab 0 0 0
bb 1 0 0
abb 0 0 0

ba 0 0 0
aaa 0 0 0
aab 0 0 0
aba 0 0 0
bba 0 0 0
bbb 0 0 0
abba 0 0 0
abbb 0 0 0

Table 7
Example 3.1: observation table at step 6.

T ε a b aa

ε 0 0 0 1
a 0 1 0 0
b 0 0 1 0
aa 1 0 0 0
ab 0 0 0 0
bb 1 0 0 0
abb 0 0 0 0

ba 0 0 1 0
aaa 0 0 0 0
aab 0 0 0 0
aba 0 0 0 0
bba 0 0 0 0
bbb 0 0 0 0
abba 0 0 0 0
abbb 0 0 0 0

Step 8: The observation table is closed, but not consistent: s1 = b, s2 = ba, α = a and w = b satisfy row(s1) = row(s2),
but T (s1αw) �= T (s2αw). Thus, αw = ab is added to W . Table 9 is the resulting observation table.

Step 9: The observation table is consistent and closed and so the DFA M(S, W , T) corresponding to the table is con-
structed. This is as represented in Fig. 7. The equivalence query succeeds.

The algorithm extends the observation table whenever one of the following three situations occurs: the table is not
consistent, the table is not closed or the table is both consistent and closed but the resulting automaton M(S, W , T) does
not accept U (in which case a counterexample is produced). Each time the observation table is extended as a result of an
incorrect consistency or closedness check, the number of distinct rows increases. Consequently, the number of incorrect
checks of either type over the entire run of the algorithm is at most n − 1, where n denotes the number of states of the
minimal DFA that accepts U . From this, it can be deduced that the total number of membership queries is O (mn2), where
m denotes the length of the longest counterexample(s); if the counterexamples are always of the minimum possible length

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.8 (1-24)

8 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 6. Example 3.1: the DFA constructed at step 7.

Table 8
Example 3.1: observation table at step 7.

T ε a b aa

ε 0 0 0 1
a 0 1 0 0
b 0 0 1 0
aa 1 0 0 0
ab 0 0 0 0
ba 0 0 1 0
bb 1 0 0 0
abb 0 0 0 0
baa 0 0 0 0
baab 0 0 0 0

aaa 0 0 0 0
aab 0 0 0 0
aba 0 0 0 0
bab 1 0 0 0
bba 0 0 0 0
bbb 0 0 0 0
abba 0 0 0 0
abbb 0 0 0 0
baaa 0 0 0 0
baaba 0 0 0 0
baabb 0 0 0 0

Table 9
Example 3.1: observation table at step 8.

T ε a b aa ab

ε 0 0 0 1 0
a 0 1 0 0 0
b 0 0 1 0 1
aa 1 0 0 0 0
ab 0 0 0 0 0
ba 0 0 1 0 0
bb 1 0 0 0 0
abb 0 0 0 0 0
baa 0 0 0 0 0
baab 0 0 0 0 0

aaa 0 0 0 0 0
aab 0 0 0 0 0
aba 0 0 0 0 0
bab 1 0 0 0 0
bba 0 0 0 0 0
bbb 0 0 0 0 0
abba 0 0 0 0 0
abbb 0 0 0 0 0
baaa 0 0 0 0 0
baaba 0 0 0 0 0
baabb 0 0 0 0 0

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.9 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 9
Fig. 7. Example 3.1: the DFA returned by L∗ .

then m � n. The bound on the number of membership queries was improved to O (n2 card(A) + n log m) by Rivest et al. [7].
The number of distinct rows increases between two successive equivalence queries and so the total number of incorrect
equivalence queries over the entire run of L∗ is at most n − 1 [3].

4. The Ll algorithm for learning finite cover automata

We now present the Ll algorithm for learning finite cover automata. We use U ⊆ A∗ to denote the unknown language
to be learned and l a positive integer that is greater than or equal to the length of the longest sequence(s) in U ; l and the
alphabet A are known to the learner. We want to construct a minimal DFCA of U w.r.t. l.

4.1. The observation table

Analogously to L∗ , the Ll algorithm will construct two sets: S , a non-empty, prefix-closed, set of sequences and W ,
a non-empty, suffix-closed, set of sequences. Additionally, S will not contain sequences longer than l and W will not
contain sequences longer than l − 1, i.e. S ⊆ A[l] and W ⊆ A[l − 1]. Initially, S = W = {ε}.

The observation table will represent a mapping T from a set of finite sequences to {0,1,−1}. The sequences in the table
are formed by concatenating each sequence of length at most l from the set S ∪ S A with each sequence from the set W .
Thus, the table will be represented by a two-dimensional array with rows labeled by elements of (S ∪ S A) ∩ A[l] and
columns labeled by elements of W .

Analogously to the L∗ algorithm, the values 0 and 1 of the function T are used to indicate whether a sequence is
contained in U or not. However, only sequences of length less than or equal to l are of interest. For the others, an extra
value, −1, is used.

Definition 4.1. The function T : ((S ∪ S A) ∩ A[l])W −→ {0,1,−1} is defined by T (u) = 1 if u ∈ U , T (u) = 0 if u ∈ A[l] \ U
and T (u) = −1 if u /∈ A[l].

The rows in the observation table are compared, but, naturally, the comparison will only involve sequences of length less
than or equal to l. Thus, instead of simple equality, a new relation on the rows of the observation table, called similarity,
needs to be defined. It will transpire that, unlike equality, similarity is not an equivalence relation.

Definition 4.2. For k, 1 � k � l, we define a relation ∼k on the rows of the observation table by s ∼k t if, for every
w ∈ W with ‖w‖ � k − max{‖s‖,‖t‖}, T (sw) = T (t w). We say that s and t are k-similar. Otherwise, s and t are said
to be k-dissimilar, written s �k t . When k = l we simply say that s and t are similar or dissimilar and write s ∼ t or s � t ,
respectively.

The relation ∼k is reflexive and symmetric, but not transitive. Consider, for example, A = {a,b}, U = {ε,b,aa}, l = 2,
S = {ε,a,aa}, W = {ε,b}. Since T (ε) = T (b) = T (aa) = 1, ε ∼ aa and b ∼ aa. However, ε � b since T (b) = 1 and T (bb) = 0.

Analogously to the L∗ algorithm, two properties of an observation table are defined: consistency and closedness.

Definition 4.3. The observation table is consistent if, for every k, 1 � k � l, whenever s1, s2 ∈ S satisfy s1 ∼k s2, for all a ∈ A,
s1a ∼k s2a.

Definition 4.4. The observation table is closed if, for all s ∈ S A, there exists t ∈ S with ‖t‖ � ‖s‖, such that s ∼ t .

Naturally, both properties are defined in terms of rows similarity instead of rows equality, as it was the case for Angluin’s
L∗ algorithm. At first sight, however, both definitions may appear to be unnecessarily strong. For example, the following,

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.10 (1-24)

10 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
weaker, form of the definition of consistency would appear to be a more natural adaptation of Angluin’s original definition:
“the observation table is consistent if, whenever s1, s2 ∈ S satisfy s1 ∼ s2, for all a ∈ A, s1a ∼ s2a.” Instead, our definition
requires the condition to be satisfied not only for l, but for all integers k less than or equal to l. It will transpire that
this stronger requirement ensures that W will contain not just sequences that distinguish between the rows of the ob-
servation table, but the shortest sequences with this property. Similarly, the definition of closedness contains an additional
requirement, “‖t‖ � ‖s‖”, whose utility may not be apparent at first sight. Again, this will ensure that each time the short-
est sequence dissimilar to the others will be added to the set S . Later in the paper these aspects will be illustrated using
appropriate examples, which will also show that the weaker forms of the two definitions would not have been sufficient.

4.2. Definition of the automaton

Naturally, the similarity relation will also be used to establish the states of the DFA corresponding to a consistent and
closed observation table. Unlike row equality though, similarity is not an equivalence relation and, consequently, it will
not be possible to identify the state space with the partition induced by it. Instead, the state set is formed by taking all
minimum, mutually dissimilar sequences from S; the minimum is taken according to the quasi-lexicographical order on A∗
(defined below).

Definition 4.5. If A = {a1, . . . ,an} is an ordered set, n > 0, then the quasi-lexicographical order on A∗ , denoted <, is defined
by: x < y if ‖x‖ < ‖y‖ or ‖x‖ = ‖y‖ and x = zai v , y = za ju, for some z, u, v ∈ A∗ and 1 � i < j � n. x � y is used to denote
that x < y or x = y.

Naturally, the correctness of the Ll algorithm will not be affected by the particular order in which the elements of A are
given even though this will influence the definition of r.

Definition 4.6. For s ∈ S ∪ S A, we define r(s) to be the minimum sequence t ∈ S such that s ∼ t , where the minimum is
taken according to the quasi-lexicographical order on A∗ . In particular, r(ε) = ε .

Clearly, for every s ∈ S ∪ S A, ‖r(s)‖ � l. On the other hand, if s ∈ S is such that ‖s‖ = l then, for every a ∈ A, sa is similar
to any element of S , and thus r(sa) = ε . Such sequences sa need not be kept in the observation table since the value of r is
known a priori.

We can now define the DFA corresponding to a consistent and closed observation table.

Definition 4.7. Suppose the observation table is consistent and closed. Then the DFA corresponding to the table, denoted
M(S, W , T) = (A, Q ,q0, F ,h) is defined as follows:

• Q = {r(s) | s ∈ S};
• q0 = r(ε);
• F = {t | t ∈ Q , T (t) = 1};
• h(t,a) = r(ta), t ∈ Q , a ∈ A.

In Section 5 (Lemma 6.5) we will show that, for all s ∈ S and a ∈ A, there exists t ∈ S such that r(r(s)a) = r(t). Thus,
since Q ⊆ S , M(S, W , T) is well defined.

For simplicity, we have used the same notation as for the automaton constructed by the L∗ algorithm. This will not
create confusion since in the remainder of the paper we will only refer to the automaton defined above.

4.3. The Ll algorithm

We can now give the Ll algorithm for learning finite cover automata.

Set S = {ε} and W = {ε}.
Construct the initial observation table using membership queries for ε and
for every a ∈ A.
Repeat

Repeat
\∗ Check consistency ∗\
For every w ∈ W , in increasing order of ‖w‖ = i, do

Search for s1, s2 ∈ S with ‖s1‖,‖s2‖ � l − i − 1 and a ∈ A
such that s1 ∼k s2, where k = max{‖s1‖,‖s2‖} + i + 1, and
T (s1aw) �= T (s2aw).
If found then

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.11 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 11
Add aw to W .
Extend T to (S ∪ S A)W using membership queries.

\∗ Check closedness ∗\
Set new_row_added = false.
Repeat for every s ∈ S , in increasing order of ‖s‖

Search for a ∈ A such that sa � t ∀t ∈ S with ‖t‖ � ‖sa‖.
If found then

Add sa to S .
Extend T to (S ∪ S A)W using membership queries.
Set new_row_added = true.

Until new_row_added or all elements of S have been processed
Until ¬new_row_added
Construct M(S, W , T).
\∗ Perform a language query ∗\
Check if M(S, W , T) is a DFCA of U w.r.t. l
If answer is “no” with counterexample t then

Add t and its prefixes to S .
Extend T to (S ∪ S A)W using membership queries.

Until answer is “yes” from language query.
Return M(S, W , T).

The algorithm will periodically check whether the consistency and closeness properties are violated and extend the table
accordingly (by adding a new row or a new column to the table, respectively).

• In order to check consistency, the algorithm will search for w ∈ W and a ∈ A such that aw will distinguish between
two rows s1 and s2 that are not distinguished by any sequences in W of length less than or equal to aw; in order
to find the shortest such sequence aw , the search will be performed in increasing order of length of w . The search is
repeated until all elements of W have been processed; as these are processed in increasing order of their length, any
sequence aw that has been added to W as a result of an incorrect consistency check will be processed itself in the
same “For” loop.

• In order to check closedness, the algorithm will search for s ∈ S and a ∈ A such that sa is dissimilar to any of the
current rows t for which ‖t‖ � ‖sa‖; similarly, the search is performed in increasing order of length of s. If such s and
a are found, then sa is added to the observation table and the algorithm will check again its consistency. Note that,
whenever a closedness check is performed (i.e. at the end of the “For” loop), the observation table is consistent; as
shown later (Lemma 7.1), this limits the length of the sequences that are added to S as a result of incorrect closedness
checks. When no such s and a are found, the table is also closed.

When both conditions are met, the corresponding DFA is constructed and it is checked whether the language L accepted
by M(S, W , T) satisfies L ∩ A[l] = U (this is called a “language query”). If the language query fails, a counterexample t is
produced, the table is expanded to include t and all its prefixes and the consistency and closedness checks are performed
once more. Eventually, the language query will succeed and the algorithm will return a minimal DFCA of U w.r.t. l.

As in the case of the L∗ algorithm, the number of states card(Q) of the DFA corresponding to the observation table
will always increase between two successive language queries (this is a direct consequence of Lemma 6.5 given later in
the paper). When card(Q) equals n, the number of states of a minimal DFCA of U w.r.t. l, the corresponding automaton
constructed by the algorithm is actually a minimal DFCA of U w.r.t. l (Theorem 6.1).

We illustrate the execution of the Ll algorithm with an example.

Example 4.1. Consider A = {a,b} and U = {aa,bb,bab} (the same set used to illustrate the execution of the L∗ algorithm in
Example 3.1) and l = 3. The initial observation table is Table 10.

Table 10
Example 4.1: initial observation table.

T ε

ε 0

a 0
b 0

Step 1: Since the table is both consistent and closed, the DFA M(S, W , T) corresponding to the table is constructed.
This is the DFA with one, non-final, state. The language query fails (i.e. M(S, W , T) is not a DFCA of U w.r.t. l) and a
counterexample is produced. Let us assume the counterexample is aa. Then a and aa are added to S and, consequently, ab,
aaa and aab are added to S \ S A. Table 11 is the resulting observation table.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.12 (1-24)

12 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
Table 11
Example 4.1: observation table at step 1.

T ε

ε 0
a 0

aa 1

b 0
ab 0
aaa 0
aab 0

Step 2: The observation table is not consistent: for i = 0 and k = 2, s1 = ε , s2 = a and α = a and w = ε satisfy s1 ∼k s2,
but T (s1αw) �= T (s2αw). Thus, αw = a is added to W . Table 12 is the resulting observation table.

Table 12
Example 4.1: observation table at step 2.

T ε a
ε 0 0
a 0 1
aa 1 0

b 0 0
ab 0 0
aaa 0 −1
aab 0 −1

Step 3: The observation table is both consistent and closed and so the DFA M(S, W , T) corresponding to the table is
constructed. This is as represented in Fig. 8. The language query fails and a counterexample is produced. Let us assume the
counterexample is bb. Then b and bb are added to S . Table 13 is the resulting observation table.

Fig. 8. Example 4.1: the DFA constructed at step 3.

Table 13
Example 4.1: observation table at step 3.

T ε a
ε 0 0
a 0 1
b 0 0
aa 1 0
bb 1 0

ab 0 0
ba 0 0
aaa 0 −1
aab 0 −1
bba 0 −1
bbb 0 −1

Step 4: The observation table is not consistent: for i = 0 and k = 2, s1 = ε, s2 = b and α = b and w = ε satisfy s1 ∼k s2,
but T (s1αw) �= T (s2αw). Thus, αw = b is added to W . Table 14 is the resulting observation table.

Step 5: The observation table is both consistent and closed and so the DFA M(S, W , T) corresponding to the table is
constructed. This is as represented in Fig. 9. The language query succeeds. Thus the algorithm returns the DFA represented
in Fig. 9.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.13 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 13
Table 14
Example 4.1: observation table at step 4.

T ε a b
ε 0 0 0
a 0 1 0
b 0 0 1
aa 1 0 0
bb 1 0 0

ab 0 0 0
ba 0 0 1
aaa 0 −1 −1
aab 0 −1 −1
bba 0 −1 −1
bbb 0 −1 −1

Fig. 9. Example 4.1: the DFA returned by Ll .

Note that, in the above example, the Ll algorithm extended the observation table 5 times and performed 3 language
queries whereas, on the same finite set U , the L∗ algorithm extended the observation table 9 times and performed 5
equivalence queries (as shown in Example 3.1). In both cases, the shortest counterexamples were chosen whenever an
equivalence (language) query failed.

Recall that earlier we discussed weaker definitions of consistency and closedness. Appendix A shows, using illustrative
examples, that such definitions are inadequate.

5. Correctness of the construction of the DFA

In this section we show that M(S, W , T) is correctly defined (more specifically, that the next-state function h is well
defined). For this purpose, we first prove a number of intermediary results concerning the previously defined similarity
relation ∼k and function r.

5.1. Similarity relation

As previously observed, the similarity relation ∼k is not transitive. However, the following is true.

Lemma 5.1. For every s, t, x ∈ S ∪ S A such that ‖x‖ � max{‖s‖,‖t‖}, s ∼k t whenever s ∼k x and t ∼k x.

Proof. Suppose s ∼k x and x ∼k t . By definition, for every w ∈ W with ‖w‖ � k − max{‖s‖,‖x‖}, T (sw) = T (xw) and for
every w ∈ W with ‖w‖ � k − max{‖x‖,‖t‖}, T (xw) = T (t w). Let m = max{‖s‖,‖t‖}. Since ‖x‖ � max{‖s‖,‖t‖}, it follows
that for every w ∈ W with ‖w‖ � k − m, T (sw) = T (xw) and T (xw) = T (t w). Thus, for every w ∈ W with ‖w‖ � k − m,
T (sw) = T (t w). Hence s ∼k t . �
5.2. Function r

All the results in this section assume the table is closed.

Lemma 5.2. For every s ∈ S ∪ S A, ‖r(s)‖ � ‖s‖.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.14 (1-24)

14 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
Proof. If s ∈ S then ‖r(s)‖ � ‖s‖ by definition. Suppose s ∈ S A. Since the observation table is closed, there exists t ∈ S with
‖t‖ � ‖s‖, such that s ∼ t . Then, by definition ‖r(s)‖ � ‖t‖ and so ‖r(s)‖ � ‖s‖. �
Lemma 5.3. For every t1, t2 ∈ r(S ∪ S A), if t1 ∼ t2 then t1 = t2 .

Proof. We provide a proof by contradiction. Let s1, s2 ∈ S ∪ S A, r(s1) = t1, r(s2) = t2 and t1 ∼ t2. Assume t1 �= t2. Without
loss of generality suppose t1 < t2. By Lemma 5.2, ‖t2‖ � ‖s2‖. Then, since s2 ∼ t2 and t1 ∼ t2, by Lemma 5.1, s2 ∼ t1. As
t1 < t2, this contradicts the fact that t2 is the minimum sequence in S similar to s2. �

In other words, the elements of r(S ∪ S A) are pairwise dissimilar.

Lemma 5.4. For every t ∈ r(S ∪ S A), r(t) = t.

Proof. Let r(t) = t′ . Since t ∼ t′ , by Lemma 5.3, t = t′ . �
Using the above lemma, we can now show that the next-state function of M(S, W , T) is well defined.

Lemma 5.5. For every s ∈ S and a ∈ A, there exists t ∈ S such that r(r(s)a) = r(t).

Proof. By definition, r(s) ∈ S and r(r(s)a) ∈ S . Then t = r(r(s)a). Indeed, by Lemma 5.4, r(t) = t and so r(r(s)a) = r(t). �
6. Correctness of the Ll algorithm

In this section we show that the Ll algorithm is correct. Let T be the current observation table and M(S, W , T) =
(A, Q ,q0, F ,h) the current learned DFA. We show that the algorithm produces a minimal DFCA of U w.r.t. l when the
number of states of M(S, W , T) equals the number of states of a minimal DFCA of U w.r.t. l. This is achieved by proving
the following statements:

• M(S, W , T) is consistent with T , i.e. for every s ∈ S ∪ S A and w ∈ W with ‖sw‖ � l, T (sw) = 1 if h(q0, sw) ∈ F and
T (sw) = 0 otherwise. (Clearly, T (sw) = −1 if ‖sw‖ > l, so this is not an issue.)1

• There is no other DFA consistent with T with less states. Furthermore, any other DFA, consistent with T but A[l]-
distinguishable from M(S, W , T), must have more states than M(S, W , T).

A number of intermediary results (Lemmas 6.1, 6.2, 6.3) are proven first. Throughout this section, the observation table
is assumed to be consistent and closed.

Lemma 6.1. For every s ∈ S, a ∈ A and t ∈ r(S ∪ S A), if sa ∼ t then ‖t‖ � ‖sa‖.

Proof. We provide a proof by contradiction. Assume ‖sa‖ < ‖t‖. Let r(sa) = t1. By definition, sa ∼ t1 and by Lemma 5.2,
‖t1‖ � ‖sa‖. Then, since sa ∼ t and ‖sa‖ < ‖t‖, by Lemma 5.1, t ∼ t1. Since t, t1 ∈ r(S ∪ S A), by Lemma 5.3, t = t1. Thus
‖sa‖ < ‖t‖ and ‖t‖ � ‖sa‖. This provides a contradiction, as required. �
Lemma 6.2. For every s ∈ S ∪ S A, h(q0, s) ∼ s and ‖h(q0, s)‖ � ‖s‖.

Proof. We provide a proof by induction on the length of s.
In the base case s = ε . The result follows since h(q0, ε) = ε .
In the induction step we assume h(q0, s) ∼ s and ‖h(q0, s)‖ � ‖s‖ for all s ∈ S ∪ S A of length up to k. Let t ∈ S ∪ S A

of length k + 1. Since S is prefix-closed, there exists s ∈ S of length k such that t = sa. Since the observation table is
consistent, h(q0, s)a ∼ sa. Let h(q0, sa) = t1. By definition, t1 = h(q0, sa) = h(h(q0, s),a) = r(h(q0, s)a). Thus, by Lemma 5.2,
‖t1‖ � ‖h(q0, s)a‖. Since h(q0, s)a ∼ sa, t1 ∼ h(q0, s)a and h(q0, s)a � sa, by Lemma 5.1, t1 ∼ sa. On the other hand, ‖t1‖ �
‖h(q0, s)a‖ and ‖h(q0, s)‖ � ‖s‖ imply ‖t1‖ � ‖sa‖. Thus the result holds for an arbitrarily chosen sequence t ∈ S ∪ S A of
length k + 1. �
Lemma 6.3. For every t ∈ r(S ∪ S A), h(q0, t) = t.

1 Note that, since T may contain only a subset of all possible strings in A[l], being consistent with T is not the same as being consistent with the
underlying language U .

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.15 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 15
Proof. Let h(q0, t) = t′ . By Lemma 6.2, t ∼ t′ . By definition, t′ ∈ r(S) and so, by Lemma 5.3, t = t′ . �
We can now show that M(S, W , T) is consistent with the function T .

Lemma 6.4. For every s ∈ S ∪ S A and w ∈ W with ‖sw‖ � l, h(q0, sw) ∈ F if and only if T (sw) = 1.

Proof. We provide a proof by induction on the length of w .
In the base case w = ε . Let s ∈ S ∪ S A with ‖s‖ � l. By Lemma 6.2, h(q0, s) ∼ s and ‖h(q0, s)‖ � ‖s‖. Thus, since ε ∈ W ,

T (h(q0, s)) = 1 if and only if T (s) = 1. By definition, h(q0, s) ∈ F if and only if T (h(q0, s)) = 1. Hence h(q0, s) ∈ F if and only
if T (s) = 1.

In the induction step we assume that the results holds for all w ∈ W of length up to k. Let w ∈ W of length k + 1. Since
W is suffix closed, w = aw1 for some a ∈ A and w1 ∈ W of length k. Let s be any element of S ∪ S A with ‖saw1‖ � l. Let
h(q0, s) = t . By definition, t ∈ r(S), thus, by Lemma 6.3, h(q0, t) = t . Then the following hold:

• By definition, h(q0, saw1) = h(h(q0, s),aw1) = h(t,aw1) = h(h(q0, t),aw1) = h(q0, taw1).
• Since t ∈ r(S) ⊆ S , ta ∈ S A. Thus, by induction hypothesis, h(q0, taw1) ∈ F if and only if T (taw1) = 1.
• By Lemma 6.2, s ∼ t and ‖t‖ � ‖s‖, thus T (taw1) = 1 if and only if T (saw1) = 1.

Thus, h(q0, saw1) ∈ F if and only if T (saw1) = 1, hence h(q0, sw) ∈ F if and only if T (sw) = 1. �
The following lemma also shows that there is no other DFA M ′ consistent with T with less states than M(S, W , T) and,

furthermore, if M ′ is A[l]-distinguishable from M(S, W , T), it must have more states than M(S, W , T).

Lemma 6.5. Let N be the number of states of M(S, W , T). If M ′ = (A, Q ′,q′
0, F ′,h′) is any DFA consistent with T that has N or fewer

states, then M ′ has exactly N states and is A[l]-equivalent to M(S, W , T).

Proof. Define f : Q −→ Q ′ by f (t) = h′(q′
0, t) for every t ∈ Q . We prove that f is injective. Let t1, t2 ∈ Q such that t1 �= t2.

Then there exists w ∈ W with ‖w‖ � l − max{‖t1‖,‖t2‖} such that T (t1 w) �= T (t2 w). Since M ′ is consistent with the
function T , exactly one of h′(q′

0, t1 w) and h′(q′
0, t2 w) is in F ′ . Thus, h′(q′

0, t1 w) and h′(q′
0, t2 w) must be distinct states of

M ′ and so h′(q′
0, t1) and h′(q′

0, t2) must be distinct states of M ′ . Hence f (t1) �= f (t2). As t1 and t2 are arbitrarily chosen,
f is injective. Since M ′ is supposed to have N or fewer states then M ′ , M ′ has exactly N states and f is bijective.

The set of final states of M ′ is F ′ = { f (t) | t ∈ F }. Indeed, let t ∈ Q . By Lemma 6.3, t = h(q0, t). Since M is consistent
with T , h(q0, t) ∈ F if and only if T (t) = 1. Similarly, since M ′ is consistent with T , T (t) = 1 if and only if h′(q′

0, t) ∈ F ′ . By
definition, h′(q′

0, t) = f (t). Thus, t ∈ F if and only if f (t) ∈ F ′ .
By simultaneous induction on the length of x, we prove that for every x ∈ A[l], if h(q0, x) = s1 and h′(q′

0, x) = f (s2) then
the following hold:

• ‖s1‖ � ‖x‖,
• ‖s2‖ � ‖x‖,
• if m = l − ‖x‖ + max{‖s1‖,‖s2‖} then s1 ∼m s2.

In the base case x = ε . Since h(q0, ε) = ε and h′(q′
0, ε) = ε = f (ε), s1 = ε and s2 = ε . Thus all three statements hold.

In the induction step we assume that the three statements hold for all sequences x ∈ A∗ of length at most k < l. Let
y ∈ A∗ be a sequence of length k + 1. Then y = xa for some x ∈ A∗ of length k and a ∈ A. Let h(q0, x) = s1, h(q0, xa) = t1,
h′(q′

0, x) = f (s2) and h′(q′
0, xa) = f (t2).

• By Lemma 6.3, h(q0, s1) = s1, thus t1 = h(q0, xa) = h(h(q0, x),a) = h(s1,a) = h(h(q0, s1),a) = h(q0, s1a). Thus, by
Lemma 6.2, s1a ∼ t1 and ‖t1‖ � ‖s1a‖. As ‖s1‖ � ‖x‖ (by induction hypothesis), ‖t1‖ � ‖xa‖.

• On the other hand, h′(q′
0, t2) = f (t2) = h′(q′

0, xa) = h′(h′(q′
0, x),a) = h′(f (s2),a) = h′(h′(q′

0, s2),a) = h′(q′
0, s2a). Since

h′(q′
0, t2) = h′(q′

0, s2a), for all w ∈ W , h′(q′
0, t2 w) = h′(q′

0, s2aw). Thus, since M ′ is consistent with T , for all w ∈ W
with ‖w‖ � l − max{‖s2a‖,‖t2‖}, T (s2aw) = T (t2 w). Hence s2a ∼ t2. Furthermore, by Lemma 6.1, ‖t2‖ � ‖s2a‖. As
‖s2‖ � ‖x‖ (by induction hypothesis), ‖t2‖ � ‖xa‖.

• Let m′ = l − ‖xa‖ + max{‖t1‖,‖t2‖}. It remains to be shown that t1 ∼m′ t2. We provide a proof by contradiction. Assume
t1 ∼m′ t2 does not hold. Then there exists w ∈ W of length of most m′ − max{‖t1‖,‖t2‖} = l − ‖xa‖ such that T (t1 w) �=
T (t2 w). Since s1a ∼ t1 and ‖t1‖ � ‖s1a‖ � ‖xa‖, T (t1 w) = T (s1aw). Since s2a ∼ t2 and ‖t2‖ � ‖s2a‖ � ‖xa‖, T (t2 w) =
T (s2aw). Thus T (s1aw) �= T (s2aw). On the other hand, by induction hypothesis, s1 ∼m s2. Thus, since the observation
table is consistent, s1a ∼m s2. Then, for all w ′ ∈ W of length of most l − max{‖s1a‖,‖s2a‖}, T (s1aw ′) = T (s2aw ′). Since
max{‖s1a‖,‖s2a‖} � ‖xa‖, this provides a contradiction, as required.

Finally, we show that M and M ′ are A[l]-equivalent. Let x ∈ A[l], h(q0, x) = s1 and h′(q′
0, x) = f (s2). Then, as shown above,

s1 ∼m s2, where m = l − ‖x‖ + max{‖s1‖,‖s2‖}. Thus, since m � max{‖s1‖,‖s2‖} and ε ∈ W , T (s1) = T (s2). Since M is

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.16 (1-24)

16 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
consistent with T and h(q0, s1) = s1, s1 ∈ F if and only if T (s1) = 1. By definition, f (s2) = h′(q′
0, s2). Thus, since M ′ is

consistent with T , f (s2) ∈ F ′ if and only if T (s2) = 1. Thus, s1 ∈ F if and only if f (s2) ∈ F ′ . Hence h(q0, x) ∈ F if and only if
h′(q′

0, x) ∈ F ′ . �
From the above lemma it follows that the DFA returned by the Ll algorithm is a minimal DFCA of U w.r.t. l.

Theorem 6.1. Suppose the observation table is consistent and closed. Let N be the number of states of M(S, W , T) and n the number
of states of a minimal DFCA of U w.r.t. l. If N � n then N = n and M(S, W , T) is a minimal DFCA of U w.r.t. l.

Proof. Let M ′ be a minimal DFCA of U w.r.t. l. Then M ′ is consistent with T and has n states. Since n � N , by Lemma 6.5,
n = N and M ′ is A[l]-equivalent to M(S, W , T). Thus M(S, W , T) is a minimal DFCA of U w.r.t. l. �
7. Termination and complexity

So far we have not discussed the termination of the Ll algorithm. Naturally, as the DFA M(S, W , T) is always consistent
with T and the set A[l] is finite, the algorithm will eventually return the correct result. However, the underlying idea of
the Ll algorithm is to gradually increase the number of states of the corresponding automaton M(S, W , T) by performing
appropriate consistency and closeness checks and language queries, rather than simply exhausting the search space.

The first three subsections will give upper bounds for the number of incorrect closedness checks, the number of incorrect
consistency checks and the number of incorrect language queries, respectively, while the last subsection will evaluate the
complexity of the algorithm. In what follows, n will denote the number of states of a minimal DFCA of U w.r.t. l.

7.1. Closedness checks

We say that the algorithm performs an incorrect closedness check whenever it finds s ∈ S and a ∈ A such that sa � t
∀t ∈ S with ‖t‖ � ‖sa‖. In order to find an upper bound on the number of incorrect closedness checks, we will examine the
evolution of the state set of the DFA constructed by the algorithm. This will be denoted by S0. That is, at any time during
the execution of the algorithm, we denote S0 = {r(s)|s ∈ S}. By definition, the elements of S0 are pairwise dissimilar. Initially
S0 = {ε}. Whenever the observation table is consistent and closed, S0 will become the state set of M(S, W , T) (denoted Q
in Section 4.2). At any time during the execution of the algorithm, S0 will have between 1 and n elements.

Since the counterexamples produced by an incorrect language check may have any length less than or equal to l, the
sequences in S that are the result of such incorrect queries may be as long as l. However, if a sequence is added to S as the
result of an incorrect closedness check, its length is limited by the number of elements of S0, as shown by the following
lemma.

Lemma 7.1. Suppose s has been added to S as a result of an incorrect closedness check. Then for every prefix si of s, ‖r(si)‖ = ‖si‖.

Proof. Let si be the prefix of s of length ‖s‖ − i, 0 � i � ‖s‖. We prove by induction on i that ‖r(si)‖ = ‖si‖.
In the base case i = 0 and so s0 = s. Since s has been added to S as a result of an incorrect closedness check, s � t ∀t ∈ S

with ‖t‖ � ‖s‖. Thus r(s) = s and so ‖r(s)‖ = ‖s‖.
In the induction step we assume that ‖r(si)‖ = ‖si‖, i < ‖s‖. Let si = si+1a, a ∈ A and let r(si+1) = s′

i+1. We prove by
contradiction that ‖s′

i+1‖ = ‖si+1‖. We assume ‖s′
i+1‖ < ‖si+1‖. Since the table was consistent when the closedness check

(which resulted in s being added to S) was performed, s′
i+1 ∼ si+1 implies s′

i+1a ∼ si+1a = si . Furthermore ‖s′
i+1a‖ < ‖si‖.

Two cases can be distinguished:

• s′
i+1a ∈ S . Thus ‖r(si)‖ < ‖si‖. This provides a contradiction.

• s′
i+1a /∈ S . Then s′

i+1a � t ∀t ∈ S with ‖t‖ � ‖s′
i+1a‖. (This can be proven by contradiction. If there exists t ∈ S with

‖t‖ � ‖s′
i+1a‖ such that s′

i+1a ∼ t then si ∼ t and ‖t‖ < ‖si‖, which contradicts ‖r(si)‖ = ‖si‖.) As ‖s′
i+1a‖ < ‖s‖, s′

i+1a
would be added to S instead of s as the result of the incorrect closedness check. This also provides a contradiction. �

Thus, the length of a sequence that has been added to S0 as the result of an incorrect closedness check cannot exceed
the number of elements of S0 (after this addition) minus 1. From this, it can be deduced that the algorithm will perform at
most n(n − 1)/2 incorrect closedness checks.

Lemma 7.2. The number of incorrect closedness checks performed over the entire run of Ll is at most n(n − 1)/2.

Proof. Let S0 = {s1, . . . , sk} at some time during the execution of the algorithm, s1 < · · · < sk , k � n. Every such S0 is
mapped onto an n-tuple x = (x1, . . . , xn) ∈ {0, . . . , l + 1}n , defined by:

• x j = ‖s j‖, 1 � j � k;
• x j = l + 1, k + 1 � j � n.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.17 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 17
In other words, each sequence in S0 is mapped onto a non-negative integer representing its length, while the remaining
components of x are set to l + 1. Since the length of any sequence in S0 will always be less than l + 1, the two cases can
be distinguished.

We define an order relation � on {0, . . . , l + 1}n by (x1, . . . , xn) � (x′
1, . . . , x′

n) if, for every j, 1 � j � n, x j � x′
j . It can be

observed that the relation � is a partial order. We denote x < x′ if x � x′ and x �= x′ .
Consider x = (x1, . . . , xn) and x′ = (x′

1, . . . , x′
n) two successive values (at steps t and t + 1) during the execution of the

algorithm. Then, for every 1 � j � n, either x j = l + 1 (S0 has less than j elements) or x j, x′
j � l and x′

j � x j (S0 has at least
j elements and the length of the jth sequence in S0 cannot increase between t and t + 1). Thus x′ � x. Furthermore, if an
incorrect closedness check is performed between t and t + 1 then some sequence in S0 is replaced by a shorter sequence
(x′

j < x j with x j, x′
j � l for some j) or a new sequence is added to S0 (x j = l + 1 and x′

j � l for some j) and so x′ < x.
By Lemma 7.1, if the component x j , 2 � j � n, is changed as a result of an incorrect closedness check then the new value

satisfies x j � j − 1. As the minimum possible value of x is (0,1, . . . ,1) and the first component of the tuple x is always
x1 = 0 (since ε ∈ S), at most

∑n
j=2 (j − 1) = n(n − 1)/2 incorrect closedness checks can be performed over the entire run of

the algorithm. �
7.2. Consistency checks

In what follows, we will say that w ∈ W l-distinguishes between s1 and s2, s1, s2 ∈ S , if ‖w‖ � k − max{‖s‖,‖t‖} and
T (sw) �= T (t w).

For every two dissimilar sequences s1, s2 ∈ S , we denote by d(s1, s2) the minimum element (according to the quasi-
lexicographical order) of W that l-distinguishes between s1 and s2. Then we define W0 as the set of all such sequences,
i.e. W0 = {d(s1, s2) | s1, s2 ∈ S, s1 �l s2}. Initially, W0 = {ε}. An upper bound on the number of incorrect consistency checks
will be determined by examining the evolution of W0 during the execution of the algorithm. (The algorithm is said to
perform an incorrect consistency check whenever it finds w ∈ W , s1, s2 ∈ S with ‖s1‖,‖s2‖ � l − ‖w‖ − 1 and a ∈ A such
that s1 ∼k s2 and T (s1aw) �= T (s2aw), where k = max{‖s1‖,‖s2‖} + ‖w‖ + 1.)

We will say that U ⊆ W partitions R ⊆ S into classes C1, . . . , Ck ⊆ R (
⋃

1� j�k C j = R and Ci ∩ C j , 1 � i < j � k) if (1) for
every j1, j2, 1 � j1 < j2 � k and every s1 ∈ A j1 , s2 ∈ A j2 , there exists w ∈ U that l-distinguishes between s1 and s2 and
(2) for every j, 1 � j � k, and every s1, s2 ∈ C j , there is no w ∈ U that l-distinguishes between s1 and s2. Note that, since
similarity is not an equivalence relation, not every subset of W would necessarily induce a partition on S or a subset of S .
However, the elements of W0 gradually partition S0, as shown by the following lemma.

Lemma 7.3. Let W0 = {w1, . . . , wk}, w1 < · · · < wk, at some time during the execution of the algorithm. For every i, 0 � i � k,
{w1, . . . , wi} induces a partition on S0 and, furthermore, it partitions S0 into at least i + 1 classes.

Proof. We prove the result by induction on i, 0 � i � k.
In the base case i = 0. As ∅ partitions S0 into 1 class, the statement is true for i = 0.
In the induction step we assume that {w1, . . . , wi} partitions S0 into at least i + 1 classes, i < k. Let us denote by C2

the set of all these classes that contain at least 2 elements. As all pairs of elements of S0 will be l-distinguished by some
element of {wi+1, . . . , wk}, the length of any sequence contained in any element of C2 will be at most l − ‖wi+1‖. Thus,
wi+1 will induce a partition on any element of C2. By definition, there exist some subset C j ∈ C2 and s1, s2 ∈ C j such that
wi+1 l-distinguishes between s1 and s2. Then w j+1 will partition C j into two classes. Thus {w1, . . . , wi+1} will partition S0
into at least i + 1 classes. �

A consequence of the above lemma is that W0 may have at most n − 1 elements.

Lemma 7.4. At any time during the execution of the algorithm, W0 has at most n − 1 elements.

Proof. Let k be the number of elements of W0. By Lemma 7.3, W0 partitions S0 into at least k+1 classes. Thus k � n−1. �
Furthermore, the length of the sequences in W0 are limited by the number of elements of S0, as shown by the following

lemma.

Lemma 7.5. At any time during the execution of the algorithm, if S0 has i elements, i � 2, then the length of any sequence in W is less
than or equal to i − 2.

Proof. We prove the result by induction on the execution of the algorithm.
In the base case, S0 has 2 elements s1 and s2. As T (s1) �= T (s2), W = {ε}.
In the induction step we assume that the result holds at some step t in the execution of the algorithm (for which the

number of elements of S0 is i) and we prove that the result holds at the next step t + 1. The values of S0 and W at the two

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.18 (1-24)

18 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
steps are denoted by St
0, W t and St+1

0 , W t+1, respectively. First, observe that, if the operation performed between t and

t + 1 is an incorrect closedness check or an incorrect language query then W t+1 = W t . Thus, since St+1
0 will have at least

the same number of elements as St
0, the result will hold at step t + 1. Suppose now that the operation performed between

t and t + 1 is an incorrect consistency check; let s1, s2 ∈ S , a ∈ A and w ∈ W be the values for which this consistency check
fails. Then W t+1 = W t ∪ {aw}. Two cases can be distinguished:

• s1 and s2 are already l-distinguished by some element wt of W t , but wt is longer than aw . Since the newly added
sequence aw is shorter than some sequence wt that is already in W t , the result still holds at step t + 1.

• s1 and s2 are not l-distinguished by any element of W t . If aw is not longer than the longest sequence in W t , the result
will hold at step t + 1. Otherwise, by induction hypothesis, ‖w‖ � i − 2 and so ‖aw‖ � i − 1. Let R = St

0 ∪ {s1, s2}.
Since s1 and s2 are not l-distinguished by any element of W t , at least one of s1 and s2 is not contained in St

0. Thus R
will have at least i + 1 elements. As aw l-distinguishes between s1 and s2 and aw is longer than any element of W t ,
‖s1 w ′‖ � l and ‖s2 w ′‖ � l for every w ′ ∈ W t . Thus, W t will induce a partition on R and W t+1 will also induce a
partition on R . As s1 and s2 are not l-distinguished by any element of W t , but are distinguished by aw , W t+1 will
partition R into at least card(St

0) + 1 classes. Thus, St+1
0 will have at least i + 1 elements. Then the result holds at step

t + 1 since the length of any sequence in W t+1 is less than i − 1. �
Using the above lemmas, we show that the algorithm will perform at most (n − 1)(n − 2)/2 incorrect consistency checks.

Lemma 7.6. If n � 2 then the number of incorrect consistency checks performed over the entire run of Ll is at most (n − 1)(n − 2)/2.

Proof. Let W0 = {w1, . . . , wk} at some time during the execution of the algorithm, w1 < · · · < wk , k � n − 1. Every such
W0 is mapped onto an n-tuple y = (y1, . . . , yn−1) ∈ {0, . . . ,n − 1}n−1, where, for every j, 1 � j � n − 1, y j is defined as
follows:

• if S0 has at least j + 1 elements then, if i is the minimum integer such that {w1, . . . , wi} partitions S0 into at least
j + 1 classes then y j = ‖w j‖ (since the elements of S0 are pairwise dissimilar, {w1, . . . , wk} partitions S0 into at least
j + 1 classes and so there exists such i);

• else y j = n − 1.

In other words, y j is the length of the minimum sequence wi ∈ W0 such that {w1, . . . , wi} partitions S0 into at least j + 1
classes, if S0 has at least j + 1 elements; otherwise y j is set to n − 1. (According to Lemma 7.5, the length of any sequence
in W will always be less than n − 1 so the two cases can be distinguished.)

Analogously to the proof of Lemma 7.2, we define a partial order � on {0, . . . ,n − 1}n−1 and we observe that if y and
y′ are two successive values (at steps t and t + 1) during the execution of the algorithm then y � y′ . Furthermore, if an
incorrect consistency check is performed between t and t + 1 then a new sequence is w added to W ; w will l-distinguish
two elements s1 and s2 of S that had not been l-distinguished before or had been l-distinguished by longer sequences.
As ‖r(s1)‖ � ‖s1‖ and ‖r(s2)‖ � ‖s2‖, w will l-distinguish between r(s1) and r(s2). Thus w will l-distinguish two elements
of S0 that had not been l-distinguished before or had been l-distinguished by longer sequences. Hence, if an incorrect
consistency check is performed between the two steps t and t + 1 then y < y′ .

As ε ∈ W , the first component of the tuple y is always y1 = 0. Furthermore, y j � j − 1 whenever y j �= n − 1, 2 � j �
n − 1. Indeed, consider the step t j in the execution of the algorithm when y j first receives a value different from n − 1. At
the previous step t j − 1, S0 had at most j elements and so, by Lemma 7.5, the length of any sequence in W at step t j − 1
must have been at most j − 2. Thus, at step t j , the length of any sequence in W must be at most j − 1 and so y j will be
at most j − 1.

As the minimum possible value of y is (0,1, . . . ,1), at most
∑n−1

j=2 (j − 1) = (n − 1)(n − 2)/2 incorrect consistency checks
can be performed over the entire run of the algorithm. �
7.3. Language queries

Analogously to the L∗ algorithm, the number of states of the DFA M(S, W , T) corresponding to the observation table
always increases between two successive language queries. Thus, the total number of incorrect language queries will be at
most n − 1.

Lemma 7.7. The number of incorrect language queries performed over an entire run of Ll is at most n − 1.

Proof. First, observe that, if an incorrect language query has been performed for some M(S, W , T), then the observation
table is consistent and closed and so, by Theorem 6.1, M(S, W , T) has at most n − 1 states. Now, suppose that an in-
correct language query has been performed for M(S, W , T) and let us denote by t the counterexample produced by this
language query. The algorithm must eventually make another equivalence query for some M(S ′, W ′, T ′). Since T ′ extends

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.19 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 19
T , M(S ′, W ′, T ′) is consistent with T . On the other hand, since t ∈ S ′ and ε ∈ W , M(S ′, W ′, T ′) produces the right out-
come for the previous counterexample t and so M(S, W , T) and M(S ′, W ′, T ′) are not l-equivalent. Then, by Lemma 6.5,
M(S ′, W ′, T ′) must have at least one more state than M(S, W , T). Thus, the number of states is increasing from one incor-
rect query to another and cannot exceed n − 1. From this we conclude that the algorithm can make at least n − 1 incorrect
language queries. �
7.4. Complexity

Analogously to the L∗ algorithm, the time complexity of Ll depends on the length of the longest counterexample pro-
duced by incorrect language queries. Let m be this maximum length. Also, let p denote the number of elements of the
alphabet A, i.e. p = card(A).

We first determine the space needed by the observation table. By Lemma 7.2, the observation table may be discovered
to be not closed at most n(n − 1)/2 times; each time this happens, a new sequence is added to S . On the other hand,
there may be at most n − 1 incorrect language queries, each of which will result in at most m sequences added to S .
Thus card(S) � X = 1 + n(n − 1) + m(n − 1) = O (mn + n2). Furthermore, by Lemma 7.1, the length of any sequence in S is
max{m,n − 1}. By Lemma 7.6, the observation table may be discovered to be not consistent at most (n − 1)(n − 2)/2 times.
Thus, card(W) � Y = 1 + (n − 1)(n − 2)/2 = O (n2). By Lemma 7.5, the length of any sequence in W is at most n − 2. Thus,
(S ∪ S A)W will contain at most X(1 + p)Y = O (mn3 + n4) sequences. The maximum length of any sequence in (S ∪ S A)W
is L = max(m,n − 1) + n − 2 + 1 = O (m + n). Thus, the observation table takes space O (m2n3 + mn4 + n5).

Now we examine the time needed for each type of operation performed by the algorithm. First, observe that, in the
“For” loop used to check the consistency of the observation table, the result produced by s1 ∼k s2 can be reused in
checking s1 ∼k+1 s2 and so the corresponding elements in the s1 and s2 rows are compared only once. Thus, checking
if the observation table is consistent will involve at most (X(X − 1)/2)Y (1 + p) comparisons. As there can be at most
n + (n − 1)(n − 2)/2 + n(n − 1) consistency checks, the total time needed to check if the table is consistent is polynomial.
Checking if the observation table is complete will involve at most X2Y p comparisons. As there can be at most n + n(n − 1)

completeness checks, the total time needed to check if the table is closed is also polynomial.
Adding a sequence to S requires at most Y (1 + p) membership queries. At most m sequences are added to S as a result

of an incorrect language query. When the table is discovered to be not closed, one sequence is added to S . As there will
be at most n − 1 incorrect language queries and at most n(n − 1)/2 incorrect completeness checks, the maximum number
of sequences added to S will be m(n − 1) + n(n − 1)/2. On the other hand, adding a sequence to W requires at most
X(1 + p) membership queries and at most (n − 1)(n − 2)/2 sequences are added to W . Thus the total time needed for
adding sequences to S and W is polynomial.

In order to construct r(s) for every sequence s ∈ S , at most (n(n − 1)/2)Y = O (n4) comparisons will be needed. Thus
M(S, W , T) can be constructed in polynomial time. As at most n automata will be constructed, the total time needed will
be polynomial. Thus, the computation time of Ll is polynomial in m and n. Note also that if the counterexamples are always
of the minimum possible length then m � n and all results are polynomial in n.

8. Conclusions

This paper presents an algorithm, called Ll , for learning finite cover automata. As the size of a minimal cover automaton
of a finite language may be much smaller than the size of the minimal automaton that accepts the language, the application
of the Ll algorithm can provide substantial savings over existing automata inference methods.

A DFCA model of a system can be used in model checking and conformance testing. Bounded model checking based on
SAT methods [27,28] is rapidly gaining popularity in the formal verification community, the general consensus being that it
works particularly well on large designs where bugs need to be searched at shallow to medium depths. Conformance testing
methods for bounded sequences (which check whether the implementation conforms to the specification for all sequences
of length less than or equal to an upper bound l) have also been devised [29,30].

Further work may involve the development of an adaptive model checking technique [31] for bounded sequences, in
which an inaccurate (but not completely obsolete) model of the system exists and the verification results are exploited to
assist in learning the updates to the model.

Acknowledgments

This work was supported by CNCSIS – UEFISCSU, project number PNII – IDEI 643/2008. The author would like to thank
the anonymous reviewers for their valuable comments and suggestions.

Appendix A

Example A.1. Suppose that the following, weaker, definition of consistency was used in Ll: the observation table is consistent
if, whenever s1, s2 ∈ S satisfy s1 ∼ s2, for all a ∈ A, s1a ∼ s2a. In this case, the algorithm would check consistency by simply
searching for w ∈ W , s1, s2 ∈ S and a ∈ A, such that ‖s1‖ � l −‖w‖− 1, ‖s2‖ � l −‖w‖− 1, s1 ∼ s2 and T (s1aw) �= T (s2aw).

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.20 (1-24)

20 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 10. Example A.1: the incorrect DFA constructed at step 5′ (when the weakened definition of consistency is used).

Suppose this weaker variant of the algorithm was used in Example 4.1. Then the results produced from step 4 onwards
could differ, as shown below.

Step 4′: The observation table is not consistent: s1 = ε, s2 = b, α = a and w = a satisfy s1 ∼ s2, and T (s1αw) �= T (s2αw).
Thus, αw = aa is added to W . Table 15 is the resulting observation table.

Table 15
Example A.1: observation table at step 4′
(when the weakened definition of con-
sistency is used).

T ε a aa
ε 0 0 1
a 0 1 0
b 0 0 0
aa 1 0 −1
bb 1 0 −1

ab 0 0 −1
ba 0 0 −1
aaa 0 −1 −1
aab 0 −1 −1
bba 0 −1 −1
bbb 0 −1 −1

Step 5′: The observation table is both consistent and closed and so the DFA M(S, W , T) corresponding to the table is
constructed. This is as represented in Fig. 10. However, even though this DFA has the same number of states as a minimal
DFCA of U w.r.t. l, the language query would fail – a counterexample is bab (thus Theorem 6.1 would no longer be valid).
Intuitively, this is because aa, and not the shorter sequence b, is used to distinguish between the rows labeled ε and b in
the observation table. Naturally, since the set A[l] is finite, the algorithm will eventually find a correct DFCA of U w.r.t. l,
but further steps will be needed. For exemplification, the subsequent evolution of the algorithm is also presented.

The current step is continued by adding to S the counterexample sequence, bab, and all its prefixes. Table 16 is the
resulting observation table.

Table 16
Example A.1: observation table at step 5′
(when the weakened definition of con-
sistency is used).

T ε a aa

ε 0 0 1
a 0 1 0
b 0 0 0
aa 1 0 −1
ba 0 0 −1
bb 1 0 −1
bab 1 −1 −1

ab 0 0 −1
aaa 0 −1 −1
aab 0 −1 −1
baa 0 −1 −1
bba 0 −1 −1
bbb 0 −1 −1

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.21 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 21
Step 6′: The observation table is not consistent: s1 = ε, s2 = ba, α = b and w = ε satisfy s1 ∼ s2, and T (s1αw) �= T (s2αw).
Thus, αw = b is added to W . Table 17 is the resulting observation table.

Table 17
Example A.1: observation table at step 6′
(when the weakened definition of con-
sistency is used).

T ε a b aa
ε 0 0 0 1
a 0 1 0 0
b 0 0 1 0
aa 1 0 0 −1
ba 0 0 1 −1
bb 1 0 0 −1
bab 1 −1 −1 −1

ab 0 0 0 −1
aaa 0 −1 −1 −1
aab 0 −1 −1 −1
baa 0 −1 −1 −1
bba 0 −1 −1 −1
bbb 0 −1 −1 −1

Step 7′: The observation table is both consistent and closed and so the DFA M(S, W , T) corresponding to the table is
constructed. This is identical to the DFA constructed at step 5 of the correct algorithm (represented in Fig. 9). The language
query succeeds.

Example A.2. Suppose now that the following weaker definition of closedness was used by the Ll algorithm: the observation
table is closed if, for all s ∈ S A, there exists t ∈ S such that s ∼ t (that is, the condition ‖t‖ � ‖s‖ was removed from the
original definition). In this case, the algorithm would simply search for s ∈ S and a ∈ A such that sa � t ∀t ∈ S .

Consider the application of this variant of the algorithm for A = {a,b}, U ′ = {bia | 0 � i � 3} ∪ {ab}A[2] ∪ {aab,bab}A[1] ∪
{aaaa,baab,bbab} and l′ = 4. The initial observation table is Table 18.

Table 18
Example A.2: initial observation table.

T ε

ε 0

a 1
b 0

Step 1: The observation table is consistent but not closed: s = ε , α = a satisfy sα � t ∀t ∈ S . Thus, sα = a is added to S .
Table 19 is the resulting observation table.

Table 19
Example A.2: observation table at step 1.

T ε

ε 0
a 1

b 0
aa 0
ab 1

Step 2: The observation table is both consistent and closed and so the DFA M(S, W , T) corresponding to the table is
constructed. This is as represented in Fig. 11. The language query fails and a counterexample is produced. Let us assume the
counterexample is aab. Then aab and all its prefixes are added to S . Table 20 is the resulting observation table.

Step 3: The observation table is not consistent: for i = 0 and k = 3, s1 = ε , s2 = aa and α = a and w = ε satisfy s1 ∼k s2,
but T (s1αw) �= T (s2αw). Thus, αw = a is added to W . Table 21 is the resulting observation table.

Step 4: The observation table is both consistent and closed and so the DFA M(S, W , T) corresponding to the table is
constructed. This is as represented in Fig. 12. However, even though this DFA has the same number of states as a minimal
DFCA of U ′ w.r.t. l′ , the language query would fail – a counterexample is abaa (thus Theorem 6.1 would no longer be
valid).

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.22 (1-24)

22 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 11. Example A.2: the DFA constructed at step 2 (when the weakened definition of closedness is used).

Table 20
Example A.2: observation table at step 2.

T ε

ε 0
a 1

aa 0
aab 1

b 0
ab 1
aaa 0

aaba 1
aabb 1

Table 21
Example A.2: closed observation table
(according to the weakened definition)
at step 3.

T ε a

ε 0 1
a 1 0
aa 0 0
aab 1 1

b 0 1
ab 1 1
aaa 0 1
aaba 1 −1
aabb 1 −1

Fig. 12. Example A.2: the incorrect DFA constructed at step 4 (when the weakened definition of closedness is used).

On the other hand, if the original definition of closedness was used, Table 21 would fail the closedness check. Indeed,
s = a, α = b satisfy sα � t ∀t ∈ S with ‖t‖ � ‖sα‖ (the only sequence similar to ab is aab, but ‖aab‖ > ‖ab‖). In this case,
the shorter sequence, ab would be added to S (Table 22 is the resulting table) and the DFA corresponding to the table,
represented in Fig. 13, would pass the language test.

Interestingly, in all above examples, whenever the language query failed, the shortest counterexample was chosen. This
shows that it is not possible to weaken the definition of consistency or closedness even in the particular case in which the
algorithm is assumed to receive the shortest counterexample whenever the language query fails.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.23 (1-24)

F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–••• 23
Table 22
Example A.2: closed observation table
(according to the original definition) at
step 4.

T ε a
ε 0 1
a 1 0
aa 0 0
ab 1 1
aab 1 1

b 0 1
aaa 0 1
aba 1 1
abb 1 1
aaba 1 −1
aabb 1 −1

Fig. 13. Example A.2: the minimal DFCA of U ′ w.r.t. l′ returned by Ll .

References

[1] E.M. Clarke Jr., O. Grumberg, D.A. Peled, Model Checking, MIT Press, 1999.
[2] D. Lee, M. Yannakakis, Principles and methods of testing finite state machines—A survey, in: Proceedings of the IEEE, vol. 84, 1996, pp. 1090–1126.
[3] D. Angluin, Learning regular sets from queries and counterexamples, Inform. and Comput. 75 (2) (1987) 87–106.
[4] E. Gold, Language identification in the limit, Inform. Control 10 (1967) 447–474.
[5] J.L. Balcázar, J. Díaz, R. Gavaldà, Algorithms for learning finite automata from queries: A unified view, in: Advances in Algorithms, Languages, and,

Complexity, 1997, pp. 53–72.
[6] M. Kearns, U. Vazirani, An Introduction to Computational Learning Theory, MIT Press, 1994.
[7] R.L. Rivest, R.E. Schapire, Inference of finite automata using homing sequences, in: Machine Learning: From Theory to Applications, 1993, pp. 51–73.
[8] H. Hungar, O. Niese, B. Steffen, Domain-specific optimization in automata learning, in: CAV, 2003, pp. 315–327.
[9] T. Berg, B. Jonsson, H. Raffelt, Regular inference for state machines with parameters, in: FASE, 2006, pp. 107–121.

[10] K.J. Lang, Random DFA’s can be approximately learned from sparse uniform examples, in: COLT, 1992, pp. 45–52.
[11] K.J. Lang, B.A. Pearlmutter, R.A. Price, Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm, in:

ICGI, 1998, pp. 1–12.
[12] J. Oncina, P. Garcia, Inferring regular languages in polynomial update time, in: N. Pérez de la Blanca, A. Sanfeliu, E. Vidal (Eds.), Pattern Recognition

and Image Analysis, in: Ser. Mach. Percept. Artif. Intell., vol. 1, World Scientific, 1992, pp. 49–61.
[13] P. Dupont, Incremental regular inference, in: ICGI, 1996, pp. 222–237.
[14] P. Dupont, B. Lambeau, C. Damas, A. van Lamsweerde, The qsm algorithm and its application to software behavior model induction, Applied Artificial

Intelligence 22 (2008) 77–115.
[15] C. Câmpeanu, N. Santean, S. Yu, Minimal cover-automata for finite languages, in: Workshop on Implementing Automata, 1998, pp. 43–56.
[16] C. Câmpeanu, N. Santean, S. Yu, Minimal cover-automata for finite languages, Theoret. Comput. Sci. 267 (1–2) (2001) 3–16.
[17] C. Câmpeanu, A. Paun, S. Yu, An efficient algorithm for constructing minimal cover automata for finite languages, Internat. J. Found. Comput. Sci. 13 (1)

(2002) 83–97.
[18] C. Câmpeanu, A. Paun, J.R. Smith, Incremental construction of minimal deterministic finite cover automata, Theoret. Comput. Sci. 363 (2) (2006) 135–

148.
[19] H. Körner, On minimizing cover automata for finite languages in o(n logn) time, in: CIAA, 2002, pp. 117–127.
[20] H. Körner, A time and space efficient algorithm for minimizing cover automata for finite languages, Internat. J. Found. Comput. Sci. 14 (6) (2003)

1071–1086.
[21] A. Paun, N. Santean, S. Yu, An o(n2) algorithm for constructing minimal cover automata for finite languages, in: CIAA, 2000, pp. 243–251.
[22] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, 3rd edition, Addison–Wesley Longman, 2006.
[23] J.L. Balcázar, J. Díaz, J. Gabarró, Uniform characterizations of non-uniform complexity measures, Information and Control 67 (1–3) (1985) 53–69.
[24] C. Dwork, L.J. Stockmeyer, A time complexity gap for two-way probabilistic finite-state automata, SIAM J. Comput. 19 (6) (1990) 1011–1023.
[25] J. Shallit, Y. Breitbart, Automaticity I: Properties of a measure of descriptional complexity, J. Comput. System Sci. 53 (1) (1996) 10–25.
[26] F. Ipate, On the minimality of finite automata and stream x-machines for finite languages, Comput. J. 48 (2) (2005) 157–167.

JID:YJCSS AID:2494 /FLA [m3G; v 1.52; Prn:28/04/2011; 14:28] P.24 (1-24)

24 F. Ipate / Journal of Computer and System Sciences ••• (••••) •••–•••
[27] A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs, in: TACAS, 1999, pp. 193–207.
[28] M.R. Prasad, A. Biere, A. Gupta, A survey of recent advances in sat-based formal verification, Int. J. Software Tools Tech. Tran. 7 (2) (2005) 156–173.
[29] F. Ipate, Bounded sequence testing from non-deterministic finite state machines, in: TestCom, 2006, pp. 55–70.
[30] F. Ipate, Bounded sequence testing from deterministic finite state machines, Theoret. Comput. Sci. 411 (16–18) (2010) 1770–1784.
[31] A. Groce, D. Peled, M. Yannakakis, Adaptive model checking, in: TACAS, 2002, pp. 357–370.

	Learning ﬁnite cover automata from queries
	1 Introduction
	2 Preliminaries
	2.1 Finite automata - general concepts
	2.2 Deterministic ﬁnite cover automata

	3 The L* algorithm for learning regular sets
	4 The Ll algorithm for learning ﬁnite cover automata
	4.1 The observation table
	4.2 Deﬁnition of the automaton
	4.3 The Ll algorithm

	5 Correctness of the construction of the DFA
	5.1 Similarity relation
	5.2 Function r

	6 Correctness of the Ll algorithm
	7 Termination and complexity
	7.1 Closedness checks
	7.2 Consistency checks
	7.3 Language queries
	7.4 Complexity

	8 Conclusions
	Acknowledgments
	Appendix A
	References

